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This article tests whether points in tennis are independent and identically distributed (iid). We model the probability of winning a point
on service and show that points are neither independent nor identically distributed: winning the previous point has a positive effect on
winning the current point, and at “important” points it is more dif� cult for the server to win the point than at less important points.
Furthermore, the weaker a player, the stronger are these effects. Deviations from iid are small, however, and hence the iid hypothesis will
still provide a good approximation in many cases. The results are based on a large panel of matches played at Wimbledon 1992–1995, in
total almost 90,000 points. Our panel data model takes into account the binary character of the dependent variable, uses random effects
to capture the unobserved part of a player’s quality, and includes dynamic explanatory variables.
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1. INTRODUCTION

This article attempts to model the probability of winning a
point on service in professional tennis. This probability is the
key to most analyses in tennis. For instance, it provides the
basis for the calculation of the probability of winning a match.
In most work on tennis, points are assumed to be independent
and identically distributed (iid), which implies that the key
probability is constant for a player throughout a match.

In this article we test the iid hypothesis and reject it.
We present a model that explicitly captures both the depen-
dence (measured by the impact of the previous point) and
the nonidentical distribution (measured by the “importance”
of the current point) and use it to analyze the deviations from
iid in more detail. We � nd that weaker players violate the iid
hypothesis more than stronger players. Deviations from the iid
hypothesis, although statistically strongly signi� cant, are not
large, and thus the hypothesis will serve as a reasonable � rst-
order approximation in many applications.

As a preview of our results (fully reported in Sec. 4.3), con-
sider a match in the men’s singles (women’s singles) between
two average players. Overall, these players will win 65%
(56%) of their service points. If the previous point was won
(and if the current point is not the � rst point in the game), then
the probability of winning a point increases by .3% (.5%),
re� ecting a “winning mood.” However, if the previous point
was lost, then the probability of winning a point decreases by
.5% (.7%). Also, the more “important” (de� ned in Sec. 4.2)
the point, the lower the probability that the server wins the
point. For example, at a point of zero importance, the prob-
ability of winning a point on service increases by .4% (.6%)
compared to a point of average importance. At 30–40 (break
point) in the � rst game of the match, the probability of win-
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ning a point on service decreases by .8% (.8%); at 5–5 in
games and 30–40 in points in the � rst set, it decreases by
1.5% (2.1%); and at 5–5 in games and 30–40 in points in the
� fth (third) set, it decreases by 4.6% (4.8%).

To test the iid hypothesis at point level and to analyze
differences across players, we need point-to-point data over
many matches involving different players. We were fortunate
in obtaining point-to-point data on 4 years of Wimbledon
men’s and women’s singles, 1992–1995, distributed over 481
matches, leading to 57,319 points in the men’s singles and
28,979 points in the women’s singles. This is one respect in
which our article differs from the existing literature on the
statistical analysis of tennis, which is hampered by a serious
lack of detailed data. If some data are available, they are either
based on end-of-match results (6–4, 6–3, 6–3 say) of sev-
eral matches (Croucher 1981; Jackson and Mosurski 1997), or
occasionally on a point-to-point analysis of one match, usu-
ally an important � nal (Croucher 1995). This article is the � rst
one using data for many matches and at point level. The data
concern only Wimbledon, one of the tournaments played on
fast grass courts, and the generality of our conclusions may
be restricted by this fact.

One characteristic of our dataset is that it involves hetero-
geneous players. If one estimates the probability of winning
a point on service using pooled data without a proper correc-
tion for the quality of players, then one will � nd that win-
ning the previous point has a positive impact, even if points
for each player individually are independent. The reason for
this effect is that winning the previous point contains a small
but positive piece of information about a player’s quality. We
call this “pseudodependence,” and it should be carefully dis-
tinguished from true dependence (the kind we are interested
in): the presence of an effect of the past on the current point
for one player.

In order to distinguish “pseudodependence” from true
dependence, we correct for the quality of a player. But only
part of that quality is observable (e.g., the player’s ranking),
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whereas the rest is unobservable (“form of the day,” fear
against a speci� c opponent). This is our � rst problem. To
solve this problem, we model the unobserved part of qual-
ity as a random individual effect, in the same spirit as one
typically corrects for unobserved heterogeneity in panel data
(Hsiao 1986, p. 33). Hence we explicitly use panel data tech-
niques to correct for pseudodependence and view our dataset
as a panel—that is, a cross-section of matches where each
match comprises two time series of service points, one for
each player.

Although panel data techniques are appropriate for our ten-
nis data, direct application involves two additional problems.
First, our focus variable (winning a point on service) is a
binary variable—it can only take the values 0 (if the point
is lost) and 1 (if the point is won)—whereas standard panel
techniques are designed for continuous data. Second, most
of our regressors are dynamic; for example, the performance
on previous points, which captures dependence, is a function
of lagged values of the dependent variable. The usual panel
estimators, such as the within-group estimator, then become
inconsistent (Hsiao 1986, p. 72).

The estimation of dynamic panel models with a discrete
dependent variable is essentially an unsolved problem in the
classical statistics literature, although partial solutions exist;
for example, the logit approach by Honoré and Kyriazidou
(2000). The Bayesian literature (Albert and Chib 1993; Chib
and Greenberg 1994; Johnson and Albert 1999) also provides
solutions for the probit and other link functions. Moreover, the
Bayesian approach is exact rather than asymptotic. However,
our very large dataset makes the latter advantage irrelevant
and, more important, makes the computational burden in the
Bayesian approach excessive.

To solve the estimation problem, we exploit the special
nature of our tennis data. This allows us to use the linear
probability model to obtain results very similar to probit and
logit (Sec. 3). Thus we can use standard dynamic panel tech-
niques (Baltagi 1995, chap. 8; Hsiao 1986, chap. 4; Mátyás
and Sevestre 1992, chap. 6). We estimate our model by fea-
sible generalized least squares (FGLS), which we show to be
consistent for our dynamic panel, taking into full account the
effects of the binary structure on the � rst two moments of
the observations and the nonobservables. Hence we provide a
practical solution to the estimation of binary dynamic panels,
and illustrate its effectiveness by applying it to our Wimbledon
data.

In the statistical literature on tennis, only a small number
of works are concerned with some aspect of independence
and identical distribution of points. Croucher (1981), studying
the “back-to-the-wall effect” (the possible effect that a player
or a team plays better if trailing) in tennis, found only very
slight evidence of this effect. Jackson and Mosurski (1997)
investigated whether “getting slammed during your � rst set
might affect your next.” In other words, they challenged the
independence assumption and concluded that there is depen-
dence, possibly caused by “psychological momentum.” In ear-
lier work (Magnus and Klaassen 1999a–c) we tested 11 tennis
hypotheses, many of them relating to the iid hypothesis, and
rejected most of them.

The question of independence and identical distribution has
been a hot topic in other sports, particularly basketball and

baseball. Dependence between points is called “streaks” in
baseball. Lindsey (1961) found that the distributions of runs
scored in different half-innings in baseball are not homo-
geneous (the � rst and third half-innings have the highest
expected number of runs). Nevertheless, Lindsey concluded
that scores can be replicated assuming independence of runs
scored in different innings. Simon (1971, 1977) noticed that
of the 31 World Series played from 1945–1975, 18 have lasted
seven games (the maximum). From this he concluded that
there must be a back-to-the-wall effect in which the team that
is behind performs better, thus challenging the independence
assumption. Siwoff, Hirdt, and Hirdt (1987, p. 97) found that
the probability of hitting well in a game is independent of
whether or not the hitter is on a streak. Albright (1993) also
did not � nd convincing evidence of streaks. However, com-
menting on Albright’s article, Stern and Morris (1993) and
Albert (1993) suggested alternative approaches that might lead
to a different conclusion. Stern (1995) suggested, however,
that streaks might exist. Thus the question remains unresolved.

In basketball, dependence between points is known as the
“hot hand.” Research on the hot hand started with psycholo-
gists Gilovich, Vallone, and Tversky (1985), who concluded
that people believe in the hot hand (not that a hot hand
actually exists). Larkey, Smith, and Kadane (1989) examined
game data for 18 NBA players, in particular Detroit’s Vinnie
Johnson, who has a reputation of being one of the most streaky
of shooters. From their descriptive analysis they concluded
that Johnson is indeed a streaky shooter and hence that the hot
hand exists. In contrast, Camerer (1989) showed that although
the basketball market believes in the hot hand, in fact there
is no such thing in basketball shooting. He found that bets
placed on teams with a current winning streak are more likely
to be losers than winners, and he concluded that teams on
winning streaks are mistakenly believed to be hot. In a com-
ment, Brown and Sauer (1993) disagreed with Camerer and
showed that hot-hand effects are present. Clearly, this issue is
also unresolved.

This article is organized as follows. In Section 2 we brie� y
discuss the data and the representativeness of the sample. In
Section 3 we discuss the various problems that arise in mod-
eling a binary dynamic panel dataset with random effects,
and show how this model can be consistently estimated (with
details given in the Appendix). Section 3 (and the Appendix)
contain the theoretical part of the article and can be read with-
out any knowledge of or interest in tennis. In Section 4 we dis-
cuss the choice of variables for our tennis application, present
our estimation results, and test the iid hypothesis. We provide
extensive sensitivity analyses and diagnostics in Section 5, and
a conclusion in Section 6.

2. THE DATA

Our data consist of 481 matches played at the Wimbledon
championships during 1992–1995: 258 matches in the men’s
singles and 223 matches in the women’s singles. In each match
we know the two players and the complete sequence of points.
Because of the special nature of points played in tie-breaks,
these points have been excluded from the analysis in this arti-
cle. Because men play for three won sets and women for two,
we have about twice as many points for the men (57,319) than
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for the women (28,979). We have described the data in detail
in earlier work (Magnus and Klaassen 1999a).

We do not have data on all matches played during the
4 years. In fact, we have only the matches played on one of
the � ve “show courts” (Centre Court and Courts 1, 2, 13, and
14), because these are the only courts where the data collec-
tion occurred. As a result, we have data on almost half of the
1,016 matches played. Typically, matches involving the most
important players are scheduled on the show courts, and this
causes an underrepresentation in the dataset of matches involv-
ing weaker players. All results have been corrected for this
selection problem by weighting the matches by the inverses
of the sampling percentages. We have discussed the (admit-
tedly imperfect) weighting procedure in Magnus and Klaassen
(1999b). In fact, whether or not we weight, we still reject the
iid hypothesis (see Sec. 5, question 9).

The focus variable in this article is the probability of win-
ning a point on service. Averaging over all players, this prob-
ability is estimated as .645 (with a standard error of .002)
in the men’s singles and 0559 400035 in the women’s singles,
a large difference. This is one important difference between
men’s singles and women’s singles, but we have also reported
other differences (Magnus and Klaassen 1999a–c). As a result,
we keep the analyses for the men’s singles and the women’s
singles separate.

3. DYNAMIC BINARY PANEL DATA WITH
RANDOM EFFECTS

In this section we develop the model and describe a consis-
tent method of estimation, details of which we provide in the
Appendix. The tennis aspect is minimal in this section, so the
results should be of more general interest.

We regard our data as a panel consisting of N matches (258
in the men’s singles, 223 in the women’s singles). We assume
throughout that matches are independent, and thus we begin
by considering one match.

We wish to test the iid assumption. As a vehicle for doing
so, we model the probability of winning a point on service.
Thus let yat be 1 if player ¡ wins his or her tth service point
(against player ¢) and 0 otherwise. (We write yat instead of
yabt for simplicity of notation, although yat depends on both ¡
and ¢.) Similarly, let ybt be 1 if ¢ wins his or her tth service
point (against ¡) and 0 otherwise.

Within each match of T points, we have data on Ta service
points of player ¡ and Tb service points of player ¢. An
average match in the men’s singles comprises T D Ta

C Tb
D

222 points (130 points in the women’s singles).
The two players ¡ and ¢ in each match are modeled sym-

metrically. Concentrating on player ¡, our starting point is the
linear probability model

yat
D Qa

C Dat
C …at1 (1)

which comprises three components: quality Qa, other
(dynamic) regressors Dat , and random errors …at . (Again, we
write, for instance, Qa instead of Qab for simplicity of nota-
tion.) Equation (1) says that the probability that ¡ wins the tth
service point is equal to the expectation of Qa

C Dat (assum-
ing that …at has expectation 0).

The choice of a linear probability model requires a justi� ca-
tion. First, because E4yat5 D Pr4yat

D 15 because of the binary
character of yat , the estimated expectation must lie between 0
and 1. This is not necessarily the case in general, but in our
tennis dataset it is always the case. In fact, the estimated prob-
ability of winning a point on service for each player lies in
the interval (.55, .75) in the men’s singles and (.42, .73) in the
women’s singles; see also Section 5, question 1. Second, the
binary character also implies second-moment restrictions on
the model. The equality restriction E4y2

at5 D E4yat5 will be
imposed, whereas the second-moment inequality restrictions
0 < E4yatyas5 < 1 and 0 < E4yatybs5 < 1 are satis� ed (Sec. 5,
question 1). We do not consider higher-order moment restric-
tions, because our FGLS method of estimation uses only
� rst and second moments. Third, alternative nonlinear mod-
els (such as probit and logit) will yield comparable results,
because the relative deviation in the range (.35, .70) between
the link functions of the linear probability model and the pro-
bit and logit models (appropriately centered and scaled) is less
than 1% (see Hsiao 1986, p. 155; Maddala 1983, p. 23). Given
that the linear and nonlinear models will give similar results,
we prefer the linear probability model since it is easier to use
than panel logit or probit models and allows us to use stan-
dard (and computationally fast) GLS techniques in solving the
dynamics problem (Sec. 3.4).

Our approach to the problem is classical, not Bayesian,
although Albert and Chib (1993) and Johnson and Albert
(1999, chap. 3) showed how to � t probit and other mod-
els using data augmentation and Gibbs sampling. In addition,
Chib and Greenberg (1994) described Bayesian � tting algo-
rithms for ARMA models that can be extended by data aug-
mentation to discrete response models. We prefer the classical
approach for three reasons: our dataset is large, and hence
the difference in results between the classical and Bayesian
analysis will be small; the computational burden in using the
Bayesian approach will be excessive in our case; and, because
the linear probability model yields very similar results to pro-
bit and logit for the tennis data (see earlier), there is no reason
to use the more-demanding Bayesian methods needed to esti-
mate logit or probit models.

We discuss each of the three components Qa, Dat , and …at

in (1) in turn. The quality of player ¡ against player ¢,
denoted by Qa, is a crucial ingredient, because it enables us to
distinguish pseudodependence from true dependence, as dis-
cussed in Section 1. Pseudodependence is closely related to
the problem of spurious state dependence or heterogeneity
bias in the panel data literature. The problem occurs when we
ignore heterogeneous intercepts in a pooled regression, and
it leads to biased slope estimates (see Hsiao 1986, p. 6). A
commonly used method to avoid heterogeneity bias in panel
models is to use individual-speci�c intercepts. In our context
of modeling the probability of winning a service point in ten-
nis, Qa is such an individual intercept. Section 3.1 discusses
quality in more detail.

Whereas Qa contains characteristics of ¡ and ¢ at the
beginning of the match, the dynamic term Dat depends on
all match information (of both players) up to but exclud-
ing point t. If points were iid, then such match information
would be useless in predicting yat . Hence the variable Dat
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captures departures from the iid hypothesis, such as depen-
dence variables capturing a winning mood (if such a mood
exists), and characteristics of the point being played (such as
the importance of a point). Section 3.2 provides further details.

The random error …at in (1) is affected by the binary struc-
ture of yat , because it can take only the values 0 ƒ Qa

ƒ Dat

and 1ƒ Qa
ƒ Dat . The implications of the binary structure on

the error term are discussed in Section 3.3.

3.1 Quality

The proposed quality variable Qa contains some compo-
nents that we observe (most notably the ranking of the two
players) and many that we do not observe (such as form of
the day, fear against a speci� c opponent, and special ability, if
any, on grass). We assume that observed quality is linear and
denote it by x0

a‚. (The speci� c ranking-based de� nition of xa

for our tennis data is discussed in Sec. 4.1.) Unobserved qual-
ity is denoted by ‡a, and we model it as a random individual
effect, just as one typically corrects for unobserved hetero-
geneity in the panel data literature.

Thus motivated, we write quality as

Qa
D x0

a‚ C ‡a0 (2)

We assume that the observed part contains a constant term, so
that there is no loss in generality in assuming that E4‡a5 D
E4‡b5 D 0. In addition, we impose

var4‡a5 D var4‡b5 D ’21 cov4‡a1 ‡b5 D ƒ1 (3)

where —ƒ— < ’2. The assumption that the variance ’ 2 of the ran-
dom effect is constant across players is standard (Hsiao 1986,
p. 33), but the introduction of a covariance ƒ between the indi-
vidual effects of both players in one match is not standard.
This covariance captures the idea that if ¡ performs better on
service than the rankings suggest, then one would expect that
the probability that ¢ will win a point on service is lower. It
also captures, for example, fear against a speci� c opponent.
Hence for our tennis data we expect (but do not impose) that
‡a and ‡b are negatively correlated (ƒ < 0).

The � nal assumption concerning quality is that the observed
and unobserved parts are uncorrelated,

cov4xa1‡a5 D cov4xa1‡b5 D 00 (4)

This is reasonable for our tennis application, because the rank-
ings in xa are determined well before the match starts (� xed
at the end of the tournaments played in the week before
Wimbledon). The assumption is also necessary, because other-
wise the FGLS estimation procedure discussed in Section 3.4
will not be consistent (Kiviet 1995).

3.2 Dynamics

In contrast to the component Qa, which captures the effects
of variables that are known before the match begins, Dat cap-
tures the effects of variables that change during the match.
We write

Dat
D z0

at„ (5)

and interpret zat as variables that re� ect deviations from the iid
assumption. In particular, previous points may in� uence the
current point. This is dependence, and the variable ya1 tƒ1 is an
obvious (be it simple) example. In addition, the current point
may be played differently from other points. If this occurs,
then we have nonidentical distribution, which could be mea-
sured by the importance of point t. In Section 4.2 we specify
the dynamic regressors in such a way that deviations from the
iid assumption (if present) are allowed to be heterogeneous
across players.

In our application, the regressors zat are completely deter-
mined by the history of the match up to point t and possibly
exogenous attributes (such as the ranking of both players). We
emphasize that the development of the match depends also
on ‡a and ‡b, so that cov4zat1‡a5 and cov4zat1 ‡b5 may be
nonzero.

3.3 Error Term: The Effect of Binary Structure

The third component in (1) is the error term …at . The binary
structure of yat has implications for the error term …at , partic-
ularly for its variance.

We assume that E4…at5 D 0. Regarding the second moments,
we assume that

cov4…at1 xa5 D cov4…at1 xb5 D 01

cov4…at1‡a5 D cov4…at1 ‡b5 D 01

cov4…at1 zas5 D 0 4s µ t51 cov4…at1 zbs5 D 0 4s µ Sbt51

cov4…at1 …as5 D 0 4s 6D t51 cov4…at1 …bs5 D 01 (6)

where Sbt denotes the total number of points served by ¢ until
the beginning of the current game (where ¡ is serving). These
are standard assumptions in the panel data literature. For our
tennis dataset they are also reasonable, because the quality
variables xa and ‡a are given at the beginning of the match
and the dynamic regressors zat depend only on the outcomes
of the previous points.

In the panel data literature, it is usually assumed that the
variance of …at is homoscedastic (Hsiao 1986, p. 33). In our
case this is not possible, because of the binary character of
the observations. Because E4yat5 D E4y2

at5, we obtain

var4…at5 D E84x0
a‚ C z0

at„541ƒ x0
a‚ ƒ z0

at„59

ƒ 2E84z0
at„54‡a

C …at59 ƒ ’ 2 ²‘ 2
a 1 (7)

so that var4…at5 depends on a. Hence we must take het-
eroscedasticity into proper account.

3.4 Estimation

Assumptions (1)–(7) imply a dynamic binary panel model
with random effects,

yat
D x0

a‚ C z0
at„ C uat1 uat

D ‡a
C …at1 (8)

and similarly for player ¢. Stacking the 8uat9 into Ta
� 1 vec-

tors ua, and de� ning {a as the Ta
� 1 vector of 1’s and ITa

as
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the Ta
� Ta identity matrix, the T � T variance matrix of the

error vector 4u0
a1 u0

b5
0 of the whole match is given by

ì D var
ua

ub

D ‘ 2
a ITa

C ’ 2{a{0
a ƒ{a{0

b

ƒ{b {0
a ‘ 2

b ITb
C ’ 2{b {0

b

0 (9)

The matrix ì is a generalization of the variance matrix of the
standard two-error-components model and plays a crucial role
in the FGLS estimation procedure discussed later. (Again, we
simplify notation by writing ì rather than ìab , although ì is
different in each match.)

We wish to estimate the parameters of this model consis-
tently. In dealing with consistency we always make the usual
assumption that Ta (the number of points served by a player)
is � nite and that N (the number of matches) can become large.
One could argue that Ta is large for our tennis data (see begin-
ning of Sec. 3) and thus that the asymptotic approximation
when Ta

! ˆ will work satisfactorily. But this is not the case,
as we discuss in Section 5, question 8.

Estimation of a dynamic panel with random effects is no
trivial exercise, mainly because zat will be correlated with uat ,
because variables such as ya1tƒ1 in zat will be correlated with
‡a in uat . Hence the regressors and the error term are contem-
poraneously correlated, implying that ordinary least squares
(OLS) is inconsistent (even for large Ta).

The within-group or least-squares dummy variables (LSDV)
estimator does take into account ‡, but is also inappropri-
ate in this dynamic context. If we average over points for
each player and subtract from (8), then we obtain yat

ƒ Nya
D

4zat
ƒ Nza5

0
„ C 4…at

ƒ N…a5. We have lost ‡a, but again there is
contemporaneous correlation and hence inconsistency (Kiviet
1995; Nickell 1981).

In the Appendix we describe how the model’s parameters
can be consistently estimated by FGLS. We use FGLS
rather than generalized method of moments (GMM) (Ahn
and Schmidt 1997; Arellano and Bover 1995), because there
is much evidence that FGLS works well in � nite samples
(Balestra and Nerlove 1966; Sevestre and Trognon 1985),
whereas Kiviet (1995) found mixed results for the � nite-
sample behavior of GMM in such models.

4. APPLICATION TO THE WIMBLEDON DATA

4.1 Speci’ cation of Quality Variables xa

The “quality” variables xa should re� ect the observed qual-
ity of player ¡ versus player ¢. We base the de� nition of
observed quality on the ranking of both ¡ and ¢ according
to the lists published just before the Wimbledon tournament
by the Association of Tennis Professionals (for the men) and
the Women’s Tennis Association (for the women). These two
lists contain the of� cial rankings based on performances over
the last 52 weeks, including last year’s Wimbledon. The rank-
ing of player ¡ is denoted by RANKa. Note that RANKa

can be 500 even though only 128 players participate in the
tournament.

Direct use of the rankings is unsatisfactory, because quality
in tennis is a pyramid; the difference between the top two
players (ranked 1 and 2) is generally greater than between two
players ranked 101 and 102. The pyramidal structure is also
evident in the seeding system and plays a role in acquiring

points for the of� cial ranking lists. The pyramid is based on
“expected round:” 8 for the player who is expected to win
the � nal (round 7), 3 for a player who is expected to lose in
round 3, and so on. A problem with expected round is that
it does not distinguish between, for example, players seeded
9–16, because all of them are expected to lose in round 4.

Thus motivated, we propose a smoother measure of
expected round by transforming the ranking of each player
into a variable R,

Ra
D 8 ƒ log24RANKa51 (10)

where log2 x denotes logx with base 2. For example, if
RANK D 3, then R D 6042, and if RANK D 4, then R D 6000.
Note that players with RANK > 128 are not expected to play
at Wimbledon at all; for these players, R < 1. Also, R can be
negative, but this causes no problems. The average value of R

over all players is 2.57 (men) and 2.74 (women). We show the
robustness of our test results with respect to de� nition (10) in
Section 5, question 2.

What then should be included—apart from an intercept—in
xa? Obviously, a player scores more points on service against
a weaker opponent than against a stronger opponent. Hence
relative quality (the gap between the two players) Ra

ƒ Rb

matters. But absolute quality (the overall quality of the match)
Ra

C Rb also may matter, because we know that more points
on service are scored in a match between two strong players
than in a match between two weaker players (Magnus and
Klaassen 1999a). We thus write

x0
a

D 411 4Ra
ƒ Rb51 4Ra

C Rb551 (11)

and let ‚ D 4‚01‚11‚25
0 denote the corresponding vector of

three unknown parameters. Finally, we center both Ra
ƒ Rb

and Ra
C Rb by subtracting their sample means. This makes

the interpretation of ‚0 more transparent, giving the observed
quality for an average match.

4.2 Speci’ cation of Dynamic Variables z at

Because the focus of this article is on testing the iid hypoth-
esis, the dynamic variables should contain “dependence” vari-
ables and “nonidentical distribution” variables. In essence we
capture the dependence aspect by the previous point ya1 tƒ1 and
the nonidentical distribution aspect by the importance of the
point. There are three subtleties, however. The � rst subtlety
concerns the in� uence of the previous point. The point preced-
ing the � rst point of a game is the � nal point of the previous
service game of the current server. Hence in measuring the
in� uence of the previous point, there is a difference between
the � rst point (where the previous point is “long” ago) and
other points in a game. We thus de� ne a dummy variable dat ,
which takes the value 1 if the current point t is the � rst point
in a game and 0 otherwise. We then de� ne

Qya1 tƒ1
D

(
0 if dat

D 1

ya1 tƒ1 if dat
D 00

(12)

Using both Qya1 tƒ1 and dat allows us to study the effect of
the previous point without having to delete the � rst point in
every game.
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The second subtlety is the measurement of the importance
of a point. The importance of the tth point served by ¡,
denoted by impat , is de� ned as the probability that ¡ will win
the match if he or she wins the current point minus the proba-
bility that ¡ will win the match if he or she loses the current
point. This de� nition was � rst suggested by Morris (1977).

In the calculation of the importance impat , we assume
that associated with each match there are two prematch
(� xed) probabilities pa and pb . We de� ne pa as the estimated
prematch probability that ¡ wins a point on service. In partic-
ular, pa ² x0

a
Q‚, where Q‚ is the estimate of ‚ under the assump-

tion that „ D 0. We treat pa as a constant, not an estimate. The
prematch probability pb is de� ned similarly. Given the struc-
ture of a Wimbledon match (best-of-three sets for women,
best-of-� ve sets for men; tie-break at 6–6, no tie-break in the
deciding set), given the two � xed prematch probabilities, and
assuming that the points are iid, our computer program cal-
culates exactly the probability that ¡ wins the match at each
point of the match, and hence impat can be calculated at each
point. The average of impat over all points and players is .028
for men and .034 for women. The distribution of impat is
skewed to the right, indicating that important points are rare.

There is an apparent contradiction in the fact that, in cal-
culating the importance of a point, we assume that points are
iid („ D 0), although this is just what we intend to test. As a
result, importance could be misrepresented. But the question
here is not whether points are iid, but rather what is the effect
of the iid assumption on the importance measure. The proce-
dure is justi� ed because pa provides a very good � rst-order
approximation to the probability that ¡ wins a service point,
as the deviation from iid is small (Sec. 4.3). Having de� ned
the three explanatory variables, we now write the dynamic part
as Dat

D „1
Qya1 tƒ1

C „2dat
C „3impat .

However, a third subtlety must be taken into account. It may
be the case that possible deviations from the iid assumption
are player-dependent. For example, top players may be more
equable (more iid) than lesser players. We account for this
type of heterogeneity by letting „i depend on the rankings,

„i
D „i0 C „i14Ra

ƒ Rb5 C „i24Ra
C Rb5 4i D 1121 350 (13)

Because 4Ra
ƒ Rb5 and 4Ra

C Rb5 are centered (Sec. 4.1), „i0

gives the effect for an average match.
This then leads to the de� nition of the dynamic regressors,

z0
at

D 4 Qya1 tƒ1x
0
a1 datx

0
a1 impatx

0
a51 (14)

and the associated parameters, „0 D 4„101 „111 „121 „20, „211 „22,
„301 „311 „325. If „10 > 0, then there is positive depen-
dence (“winning mood”), so that winning the previous point
increases the probability of winning the current point. This
dependence is smaller for players who are better than their
opponent (if „11 < 0) and in matches between two good play-
ers (if „12 < 0). If „30 < 0, then it is more dif� cult for the
server to win an important point. The better player in a match
can neutralize this effect somewhat if „31 > 0. If „32 > 0, then
the effect is also smaller in matches between two good players.

Our main interest is the iid hypothesis, which now takes the
form „ D 0. Also of interest is the “homogeneity” hypothesis,

which tests whether deviations from iid (if present) are homo-
geneous among players. This second hypothesis takes the form
„i1

D „i2
D 0 4i D 112135.

4.3 Estimation Results and Test of the iid Hypothesis

We estimate the 14 unknown parameters (three ‚’s, nine „’s,
’ 2, and ƒ) of our model by FGLS as explained in Section 3.4,
based on the Wimbledon data described in Section 2. The
results (not reported) show that four of the nine „ parameters
(the same four for men and women) are not signi� cantly dif-
ferent from 0 (“signi� cant” is always at the 5% level), both
individually and simultaneously. (Wald tests yield p values of
96% for men and 19% for women.) The nonsigni� cant param-
eters are „11 (previous point � quality difference) and all three
„ parameters associated with the � rst-point-in-game dummy
dat . We delete these four „ parameters and obtain a reduced
model containing 10 unknown parameters. This model forms
the basis for all subsequent discussion. The estimates of the
reduced model are presented in Table 1.

The main conclusion derived from Table 1 is that the
iid hypothesis („10 D „12 D „30 D „31 D „32 D 0) is strongly
rejected with p values of .03% for men and .01% for women.
( In the unrestricted model the iid test is also rejected with p

values of .50% for men and .03% for women). In the next
section we show that this rejection is robust. The lack of
independence and the lack of identical distribution are about
equally important in this rejection. The independence hypoth-
esis („10

D „12
D 0) is rejected with a p value of 1.7% for men

and .3% for women, whereas the identical distribution hypoth-
esis („30

D „31
D „32

D 0) is rejected with a p value of 1.7%
for men and .5% for women.

Player homogeneity („12
D „31

D „32
D 0) is also rejected

with p values of .2% for men and .1% for women. ( In the
unrestricted model the homogeneity test is rejected with p val-
ues of 1.9% for men and .15% for women.) Hence deviations
from iid are player-dependent.

Winning the previous point has a positive effect on
winning the current point for both men and women,
because „10 > 0. The stronger the players, the weaker

Table 1. Estimation Results for the Wimbledon Data

Men’s singles Women’s singles

Constant (‚0) .6456 (.0040) .5596 (.0050)
Quality difference (‚1) .0106 (.0014) .0198 (.0017)
Quality sum (‚2) .0035 (.0014) .0040 (.0017)

Previous point Qya1tƒ1
� constant („10) .0085 (.0041) .0123 (.0058)
� quality sum („12) ƒ.0028 (.0014) ƒ.0052 (.0019)

Importance impat
� constant („30) ƒ.1304 (.0666) ƒ.1752 (.0779)
� quality difference („31) .0394 (.0262) .1405 (.0493)
� quality sum („32) .0533 (.0231) .0137 (.0241)

Random effects
Variance (’2) .0031 .0026
Correlation (ƒ=’2) ƒ.5353 ƒ.8317
Wald tests
iid 22.9901 [.0003] 25.2179 [.0001]
Homogeneity 14.6005 [.0022] 16.1926 [.0010]

NOTE: Standard errors are in parentheses; p values are in square brackets.
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this effect: „12 < 0. At important points, the server has a
disadvantage: „30 < 0. The effect is weaker for high-level
matches than for low-level matches („32 > 0, although not sig-
ni� cantly in the women’s singles) or when the server is better
than the receiver („31 > 0, although not signi� cantly for the
men).

Observed quality matters. As expected, the relative quality
of the two players (“quality difference”) is more important
than the absolute quality (“quality sum”): ‚1 > ‚2. Compar-
ing men’s and women’s singles, equality of the ‚ parameters
is obviously rejected (mainly because ‚0 is very different for
men and women). We also see that ‚1 is larger for the women
than for the men, which corresponds to the fact that the dif-
ference in strength between top players and lesser players is
greater in the women’s singles than in the men’s singles.

Even though the iid hypothesis is rejected, one might have
expected a stronger rejection, because the sample is so large.
Although 7 of the 10 „ estimates are signi� cant, their t ratios
are between 2 and 3, and hence individually only marginally
signi� cant. Maybe iid is rejected, not because the null hypoth-
esis is false, but because the standard errors are so small,
because of the large sample. To examine this possibility, we
need a test for iid that does not depend on the standard errors.
We thus consider the signs of the „ estimates (Berkson 1938)
and see that all � ve estimates have the same sign for men
and women (see Table 1). Because the men and women sam-
ples are independent, this has probability 1/32 if points are iid
(assuming for simplicity that the elements of O„ are mutually
uncorrelated for both men and women; taking the correlation
of the estimates into account yields a probability of 3.3%, very
close to 1/32). Hence, without using the effect of the large
sample on the standard errors, we reject iid as well.

We also compare the magnitudes of the „ estimates between
men and women. Equality of the „ parameters for these two
independent samples is not rejected (p value D 33.1%). This
shows that even with our large sample, not every hypothesis
is rejected, and that there is considerable consistency of the
results between men’s singles and women’s singles. Both � nd-
ings support our conclusion that points in tennis are not iid.

Our results also suggest that—even though iid is rejected—
the assumption of iid in speci� c applications (such as fore-
casting) could be relatively harmless. The results of the next
section support this statement.

5. DIAGNOSTICS AND SENSITIVITY ANALYSIS

Clearly, our model (like all models) is imperfect. In this
section we investigate whether the underlying assumptions are
justi� ed and how sensitive the main focus of the article (testing
the iid hypothesis) is to possible imperfections of the model.
The � rst activity is called diagnostic testing; the second sensi-
tivity analysis. We ask and answer 11 questions, some (or all)
of which may already have occurred to the reader.

1: Is the use of the linear probability model justi�ed? We
have already commented [in Section 3, after (1)] on the differ-
ences between logit, probit, and the linear probability model
and argued that the linear probability model is appropriate in
our case. The main reason why the linear probability model
could fail is if estimated probabilities fell outside the (0,1)

interval. This is never the case. We already know that the esti-
mate of E4yat5 D Pr4yat

D 15 lies in the interval (.55, .75) for
men and (.42, .73) for women. Moreover, at each point, Oyat

lies in the interval (.37, .91) for men and (.32, .85) for women.
Further, the estimate of E4yatyas5 lies in the interval (.31, .57)
for men and (.18, .53) for women for all 0 < —t ƒ s— µ 10. For
—t ƒ s— > 10, not much will change, because the boundaries are
very stable for different t ƒ s. Finally, the estimated E4yatybs5

also falls in the (0,1) range for all players.
2: Is our basic quality measure appropriate? Our basic

quality measure Ra
D „ƒ log2 RANKa was introduced in (10).

We defended this choice on theoretical grounds. If in contrast
we assume a linear basic quality measure Ra

D ƒRANKa,
then the iid hypothesis is also rejected with p values of .17%
for men and .07% for women.

3: Is unobserved quality relevant? Put differently, are ran-
dom effects actually present, which translates to the null
hypothesis ‡a

D ‡b
D 0? We use a Hausman test based on

our FGLS estimator and the restricted FGLS estimator of ‚

and „. (The restriction is ‡a
D ‡b

D 0, implying a diagonal ì
matrix.) Under the null hypothesis, the restricted FGLS esti-
mator is consistent and ef� cient. Under the alternative, FGLS
is consistent and restricted FGLS is inconsistent. The usual
Hausman test, based on the difference between the two esti-
mators and the difference between the two variance matrices,
has asymptotically a �2485 distribution and takes the values
81.8 for men and 45.5 for women with p values below .01%.
The null hypothesis is thus very � rmly rejected, unobserved
quality is de� nitely relevant, and random effects should play
a role in the estimation procedure.

4: Is any autocorrelation left in the residuals? We consider
the FGLS residuals weighted by bìƒ1=2 and denote these by
Ovt . We regress Ovt on Ovtƒk for k D 1121 : : : , which gives esti-
mates of the correlations rk (with standard errors). Because
each game contains at least four points, it is natural to consider
only r1, r2, and r3. These are all insigni� cant for both men and
women. Moreover a joint Wald test of r1

D r2
D r3

D 0 gives p

values of 62.4% for men and 28.2% for women. Hence there
is no evidence of residual autocorrelation.

5: Are the non-iid effects measured appropriately? We use
ya1 tƒ1 to test independence, and importance impat to test
whether points are identically distributed. We could replace
ya1tƒ1 by some other measure of dependence, such as “outper-
formance” of the server in the current game with respect to the
current set, de� ned as relative frequency of points won in cur-
rent game minus relative frequency of points won in previous
service games of current set. [Albert (1993), Albright (1993),
and Stern and Morris (1993) discussed similar measures in
baseball.] Similarly, we could replace impat with a breakpoint
dummy. The iid hypothesis is rejected in both cases.

6: Are more regressors needed? We have experimented
inter alia by adding ya1 tƒ2 with an associated dummy, various
measures of outperformance of the server in the current game
with respect to the current set, various measures of outperfor-
mance of the server in the current set with respect to previous
sets, similar measures for the receiver in his or her service
games, a breakpoint dummy, and separation of the importance
of point-in-match (impat) into its three components: impor-
tance of point-in-game, game-in-set, and set-in-match (Morris
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1977). Although occasionally the extra parameters are signif-
icant, the iid hypothesis is rejected in each of the extended
models, showing the robustness of our result.

7: Should the model allow for nonlinearities? We already
allow for one form of nonlinearity by making „ dependent on
the quality of the player and his or her opponent, see (13). But
we have also experimented by adding ya1 tƒ1 � impat and imp2

at .
The coef� cients of these two nonlinear terms are not jointly
signi� cant (p values of 86.0% for men and 22.5% for women),
and including the extra terms does not alter the outcome of
the iid test.

8: Are the results sensitive to the method of estimation?
Our method of estimation is FGLS (Sec. 3.4). But other esti-
mation methods are available. The Anderson–Hsiao method
(Anderson and Hsiao, 1981) does not reject the iid hypoth-
esis (p values are 24.1% for men and 17.1% for women),
although the resulting estimates do not contradict our FGLS
estimates. Both � ndings are not surprising, because it is well
known that the Anderson–Hsiao method, though consistent, is
not ef� cient. Hence when effects are small, like in our tennis
hypothesis, the Anderson–Hsiao method may not detect them.
This motivates our desire for more ef� cient methods such as
FGLS.

One could argue that Ta is large for our tennis data and thus
that the asymptotic approximation when Ta

! ˆ will work
satisfactorily (see Sec. 3.4). For Ta

! ˆ, the within-group
estimator (also known as the LSDV estimator) is consistent
(Hsiao 1986, p. 74). But using this estimator leads to an esti-
mate of „10 that is far from signi� cant. Hence, although Ta is
“large,” it is not large enough to justify an asymptotic approx-
imation for Ta

! ˆ. Nevertheless, iid is still clearly rejected.
9: What happens if we do not weight the data? We

explained in Section 2 that the data are weighted to account
for the underrepresentation of weaker players in the sample.
If we do not weight the data, then the iid test still rejects with
p values of .6% for men and .9% for women.

10: How is the in-sample � t? The usual R2 is misleading
as a diagnostic, because we are dealing with binary variables
(Maddala 1983, p. 38). Instead, we use the root mean squared
error (RMSE) and the mean absolute error (MAE) as our mea-
sures of � t, and compare our model to the “iid model” (where
all „’s are 0). Our model (the “non-iid model”) appears to per-
form only marginally better (lower MAE) than the iid model,
as shown in Table 2. As a reference point, we also estimate
the “constant model” (in which the ‚’s also are 0, except the
constant). Our model and the iid model have a much better � t
than the constant model. This means that including the rank-

Table 2. In-Sample and Out-of-Sample Fits

In-sample Out-of-sample

Men’s singles Women’s singles Men’s singles Women’s singles

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Non-iid 04777 04557 04936 04865 04778 04558 04938 04866
iid 04777 04559 04936 04869 04778 04559 04937 04869
Constant 04787 04577 04965 04928 04787 04577 04965 04928

ing variables improves the � t substantially, whereas including
the non-iid variables does so only marginally.

11: How is the out-of-sample � t? We analyze the out-of-
sample � t by estimating our model based on three years and
then predicting the other year. We can take the � rst three years
and predict the fourth year, but we can also, for example, esti-
mate the last three years and predict the � rst year. In this way
we obtain four predictions. To simplify the presentation, we
average across years. The conclusions are the same as for the
in-sample analysis (see Table 2). It also appears that the role of
outliers is very limited—these would yield a good in-sample
� t, but a bad out-of-sample � t. This is another proof of the
robustness of our results. Hence our non-iid model survives
out-of-sample analysis. In fact, all diagnostics and sensitivity
analyses show that the rejection of iid based on the estimated
model is robust in many directions against deviations from the
underlying assumptions.

6. CONCLUDING REMARKS

In this article we have used 86,298 points (481 matches) at
Wimbledon 1992–1995 to investigate whether points in pro-
fessional tennis are iid. We reject this hypothesis, and the
rejection is robust. Winning the previous point has a pos-
itive effect on winning the current point, and at important
points the server has a disadvantage. We have also shown that
the deviations from iid depend on the quality of the players;
the stronger a player, the smaller the deviation from the iid
hypothesis. These results are the same for men and women.
This suggests that players should be trained to “play every
point as it comes.”

Even though we have shown that points are not iid, we
have also shown that the divergence from iid is small. Hence
in many practical applications concerning tennis—such as
predicting the winner of the match while the match is in
progress—the iid hypothesis will still provide an good approx-
imation if we correct for the quality of the players. This makes
our study a useful starting point for future work on tennis.
Both the large dataset and the accurate FGLS method of esti-
mation are essential in detecting the small deviation from iid.

In addition to the empirical � ndings on tennis, we have pro-
vided a theoretical contribution to the estimation of discrete
dynamic panel data models. Our proposed structure allows for
a binary dependent variable, dynamic regressors, and random
individual effects but nevertheless is easy and fast to estimate
by feasible GLS. Because estimation of binary dynamic panels
is still an unsolved problem in the classical statistical litera-
ture, this approach may � nd application outside tennis as well.
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APPENDIX: FEASIBLE GENERALIZED LEAST
SQUARES ESTIMATION

FGLS estimation consists of two stages: consistent estimation of
(the parameters in) ì given in (9), and GLS on (8) using the esti-
mated ì.

Consistent Estimation of ì

To estimate ì consistently, we need consistent estimates of ‚, „,
’ 2, and ƒ [see (9) and (7)]. These are obtained in three steps. In
step 1 we take � rst differences in (8) to remove the random effect ‡a ,

yat
ƒya1 tƒ1 D 4z0

at
ƒ z0

a1 tƒ15„C 4…at
ƒ …a1 tƒ151 (A.1)

and estimate „ from this equation. Because zat is correlated with
…a1 tƒ1 , we need to estimate „ by instrumental variables. We follow
Anderson and Hsiao (1981) by using za1 tƒ1 as an instrument for
zat

ƒ za1 tƒ1, because it is uncorrelated with the error term and corre-
lated with the explanatory variable (Arellano 1989; Judson and Owen
1999; Kiviet 1995). We thus obtain a consistent estimate O„ of „.

In step 2 we use O„ to rewrite (8) as

y ü
at

D x0
a‚C uü

at1 y ü
at

D yat ƒ z0
at

O„1

uü
at

D uat ƒ z0
at4

O„ƒ „50 (A.2)

Regressing y ü
at on xa in (A.2) yields a consistent estimate O‚ of ‚

(Anderson and Hsiao 1982).
Step 3 is motivated by Hsiao (1986, p. 89). We use the consistent

estimates O„ and O‚ to estimate the covariance parameters ’2 and ƒ.
Because uat D ‡a C …at and letting Nua D 41=Ta5

P
uat , we � nd that

E4 Nu2
a5 D ’2 1 ƒ 1

Ta

C 1
Ta

4’2 C‘ 2
a 51 ƒ D E4 Nua Nub51 (A.3)

where ‘ 2
a is restricted by (7). We replace the errors uat by the resid-

uals Ouat
D yat

ƒ x0
a

O‚ ƒ z0
at

O„ and estimate ’2 C‘ 2
a by replacing ‚1„,

and ‡a
C …at (D uat) in (7) by their estimates and the expectations

by the appropriate sample means. Averaging (A.3) over players then
yields consistent estimates O’ 2 and Oƒ . Subtracting O’2 from the esti-
mated ’2 C‘ 2

a yields O‘ 2
a for all players. We thus obtain the consistent

T � T variance matrix bì from (9).

Consistency of Generalized Least Squares

We next show that GLS (with known ì) is consistent. Because
OLS is inconsistent, the consistency of GLS is not trivial. It rests on
two key ingredients: the absence of initial conditions and the fact that
observed quality is not correlated with the random effect; see (4).

Regarding the � rst ingredient, in economic datasets it is typical
that for small t, the dynamic regressors zat depend on endogenous
variables from before the sample period, such as ya0 . If such initial
values are correlated with ‡a , then GLS becomes inconsistent (Hsiao
1986, p. 88). Our case is different, because the process that generates
the data coincides with the start of the actual data collection, so
that zat cannot depend on variables such as ya0—there are no points
before the beginning of the match. Hence inconsistency because of
the existence of initial conditions does not occur here (Blundell and
Bond 1998; Kiviet 1995; Nerlove and Balestra 1992; Sevestre and
Trognon 1985).

If both ingredients are present, then Anderson and Hsiao (1982)
and Hsiao (1986, p. 88) showed (under normality) that GLS is consis-
tent, because GLS then equals maximum likelihood. Because of the
binary structure of yat , we do not assume normality. But it is obvious
in our case that GLS equals normality-based pseudo–maximum like-
lihood. Gourieroux, Monfort, and Trognon (1984) showed that the

pseudo–maximum likelihood estimator is consistent. Hence GLS is
consistent as well.

Now that we know that bì is consistent and that GLS is consistent,
we obtain new consistent estimates of ‚ and „ by performing GLS
on (8), using bì instead of ì. These FGLS estimates will be more
ef� cient than the ones obtained from (A.1) and (A.2). The ef� ciency
gain is important; see Section 5, question 8.

As a re� nement of the procedure, we use the FGLS estimates of
‚ and „ to form a new estimate of ì and continue this process until

convergence. The estimation results are not sensitive to this iterative

procedure.

[Received March 1998. Revised November 2000.]
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