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Interview with the author

by E. D. Young

Young: You have written a book.
Magnus: I wrote several.
Young: I mean your recent little introductory book. I read it.
Magnus: Did you like it?
Young: No.
Magnus: I am sorry to hear that. Do you want to know why I

wrote the book?
Young: Yes, it puzzles me.
Magnus: After my retirement from Tilburg University in the

Summer of 2013, I accepted a position as Extraordinary Professor
at the Vrije Universiteit in Amsterdam. Here I was asked to teach
a course in econometric theory for second-year undergraduate stu-
dents. I had not taught such a course for many years, so this was a
challenge.

Young: I can imagine. Especially at your age.
Magnus: In their first year these students learn some calcu-

lus, matrix algebra, and statistics, but no econometrics. Their first
encounter with econometrics takes place in the first term of their
second year. This twelve-week course consists of a two-hour lecture
and a two-hour exercise class per week. The first six weeks of the
course don’t use matrix algebra; the second half does. I was asked
to give the lectures (not the exercises) for the second half.

Young: So you looked for a suitable textbook.
Magnus: Precisely. But I did not find one. When I was a stu-

dent in the late 1960s and early 1970s there were many textbooks
providing econometric theory for students with a proper mathemat-
ical and statistical background. Now, there are few.

Young: One is enough.
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Magnus: True, but I find the few modern textbooks often too
big, too overwhelming, and too dull. Although econometrics is now
a large field, I believe that the collection of central ideas and meth-
ods is actually quite small. The aim in my book is to concentrate on
those ideas and methods, and to show that econometrics is exciting.

Young: Perhaps you are right that there are not many books
now at the more advanced undergraduate level. But there are many
books providing econometric theory without matrix algebra.

Magnus: Yes, and some of these are very good (most are not).
But my students did come to the course with a knowledge of matrix
algebra and statistics, and this knowledge is useful in understanding
econometrics. So I wanted to provide a course that catered for their
level of knowledge.

Young: So the little book contains the lectures you gave for
this group of students?

Magnus: More or less.
Young: Apart from the silly stories you tell, the book seems to

reflect your personal interests and preoccupations.
Magnus: I suppose it does. But it also contains much of the

standard material that you would expect at an introductory level.
I believe that two things are essential in such a course, because
they provide the basis for understanding important generalizations
such as instrumental variables, generalized method of moments, and
extremum estimators: first, a thorough knowledge of the standard
linear regression model; and second, a thorough understanding of
the principles of maximum likelihood. The chapters in the book
reflect this belief.

Young: I have compiled a list of all the things that you do
not talk about: autocorrelation and heteroskedasticity, Bayesian
econometrics, random regressors, time se. . .

Magnus: You are right, the book is not comprehensive. In fact,
it is quite the opposite. The challenge in writing it was what to
delete, not what to add. I believe it is better to teach less material
if at least, at the end of the course, the student can not only repro-
duce some of the material but is able to actually work with it and
apply the theory to solve his or her personal econometric problem.
This is only possible if the student learns the basic ideas underlying
econometric thought.

Young: In a way the book is rather old-fashioned. It could
have been written fifty years ago.

Magnus: It is interesting you say that. The basics of econo-
metrics have not changed that much. Most of the material that I
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discuss is also in Theil’s Principles of Econometrics, which came
out in 1971 and served as a masterly guide when I and my fellow
students studied econometrics.

Young: Does this mean we learned nothing new in the past
fifty years?

Magnus: Of course not. Econometrics has developed rapidly in
many directions, but the basics are still more or less intact.

Young: Has the field only grown or have there also been sub-
jects that have become irrelevant?

Magnus: The prime example of a subject that was important in
the past is simultaneous equations. This is hardly taught any more.
Other things were unknown in the past and are popular now, for
example cointegration, unit roots, and model averaging. These new
directions are not suitable for an introductory course and should be
discussed in later courses, for final-year undergraduates or graduate
students.

Young: I notice that you do discuss model averaging in this
little book.

Magnus: Yes, it is one of my hobbies. But I also included
it because model averaging brings out an aspect that is becoming
increasingly important in econometrics, namely the distinction be-
tween focus and auxiliary variables.

Young: This is hardly new. Ed Leamer already wrote about it
in the late 1970s.

Magnus: Leamer’s ideas did not have much effect on how we
teach econometrics. Traditionally the main task of applied econo-
metrics was to explain economic variables, and this was achieved by
estimating equations with many explanatory variables, all suppos-
edly of equal importance. But these days empirical research is more
interested in estimating causal effects, hence focusing on one or two
specific regressors (the focus regressors). The other regressors (the
auxiliary regressors) are less important; their role is to improve the
estimation of the focus parameters, but the associated auxiliary pa-
rameter values are not of primary interest. This distinction between
focus and auxiliary variables and parameters plays a key role in my
book.

Young: How about truth? You don’t seem to have a high
regard for truth.

Magnus: In an econometric context, the truth represents the
process that generated the observations, some would say ‘the true
model’. In the old days this is what we were told to discover. Once
we knew the truth, we could use it in many directions: estimate
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parameters, forecast future values, or recommend policies. We now
know that this is not feasible. A model is an approximation of the
truth and a different approximation is required depending on the
question you wish to answer. This implies that we should more
often ask ‘does it matter?’ rather than ‘is it true?’ The current
book emphasizes this distinction at various points.

Young: You added two appendices to the book. Why?
Magnus: Not all students have precisely the same background

and some will have forgotten some of the material that they should
know. The two appendices contain brief reminders of what I re-
quire as background knowledge in matrix algebra and statistics. Of
course, I had to draw the line somewhere. So, for example, I assume
that the student is familiar with the univariate normal distribution,
but not necessarily with the multivariate normal distribution. And
I assume that the student can differentiate, but not that he or she
is familiar with vector or matrix calculus.

Young: What is your hope for this book?
Magnus: Simply that it will be of use to a future generation

of economists and econometricians and will generate some joy and
enthusiasm.

Young: Finally, do you have any recommendations for this fu-
ture generation?

Magnus: Perhaps one, namely to compete for the Philip Swal-
low Award of which I am currently the sole recipient.

Young: Philip Swallow? Is he not a character in David Lodge’s
Changing Places? I did not know there was an award named after
him.

Magnus: There is. There is so much emphasis now on counting
published pages in prestigious journals. The more pages you have
and the more prestigious the journal, the more points you get and
this plays a role in tenure decisions and promotions. I do not like
this. In the end what matters is the content, not the number of
pages or the name of the journal. In order to voice my concern I
instigated an annual award for the person whose paper had been
rejected by the lowest-ranked journal. In the end only one person
ever applied for this award, namely me.

Young: No doubt your most treasured honor.

Amsterdam/Wapserveen
March/August 2017
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1 | Approximation

1.1 The captain’s age

Imagine a ship, but not an ordinary ship. This is an ocean liner
powered by four diesel engines and two additional gas turbines. It
has a length of 345 meters, weighs 79,300 tons, and has 14,000
square meters of exterior deck space. There are eighteen decks, four
swimming pools, and many restaurants. The ship’s ocean speed is 30
knots (56 km/h; 35 mph) and it houses 2500 passengers and 1250
officers and crew. Now, what is the age of the captain?

At first glance, there seems little we can say about the captain’s
age. But, upon reflection, maybe we can. To be captain of such a
flagship one needs much experience, so the captain cannot be too
young. One also needs to be fit and healthy, so the captain cannot be
too old either. It is fairly safe to estimate the captain’s age therefore
as in-between 45 and 55. In fact, the average age of the captains
of the Queen Mary 2 was 47 over the last ten years. (This was
the story I and my fellow students were told on our first lecture in
econometrics. It was supposedly an answer to the question: what is
econometrics? And it is not such a bad story either. In econometrics
we constantly struggle with the fact that the model is never quite
right and the data are never quite what we want.)

1.2 A straight line

Econometrics is often thought of as a branch of statistics, analyzing
uncertain events. In this first chapter, however, nothing is uncertain.
I simply ask the following question: given a collection of points, how
do we draw the best line through these points. This is a question
of approximation rather than of estimation. We shall be concerned
with estimation in the next chapter.
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A straight line is usually written as y = a + bx, where a and
b are called the parameters of the line. Instead of a and b, I shall
write β1 and β2, because later I shall need many more βs. Thus,
the equation

y = β1 + β2x

describes a linear relationship (that is, a line) relating y to x. If we
know the two parameters, then we can calculate y for any x we like.
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Figure 1.1: A straight line

A straight line, like the one in Figure 1.1, is the simplest ex-
ample of a model. Suppose we believe that the higher your income
the more you will spend on food. That is not an unreasonable as-
sumption. But what does the relationship between income and food
consumption look like? Is it a line? And, if so, is it precisely a line
or only approximately?

In Figure 1.2 I added some points. I collected observations on
n = 100 families. For the ith family I know their income xi and the
amount of money yi they spend on food. This gives me n points
(xi, yi). I don’t expect these n points to lie exactly on a line, but
if my model (a straight line) is to be a good model then the points
should lie approximately on the line.

This seems to be the case here. For incomes in the center,
roughly between 40 and 80, the consumption function can be well
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Figure 1.2: A consumption function

approximated by the line. To make further progress we need to be
more precise. Thus we ask the following two questions:

• How do we measure ‘closeness’ to the line?

• What do we mean when we say that an approximation is
‘good’? In other words, how close to the line should the points
be in order that a straight line is a good model?

Both points will be discussed in this chapter, but before doing so
I point out that we may well ask a third question, namely: what
is the practical significance of this line for very low and very high
incomes? In other words, does the line describe the consumption-
income relationship for all incomes or just for those in the center?
The answer is clear. For very poor and very wealthy families the
linear relationship fails to work well. For very low incomes, predicted
consumption would even become negative! This does not mean that
a linear consumption function is useless, but it is only useful in the
center of the domain. Models are approximations, not truths, and
approximations may not work well if we move too far away from the
point of approximation. This is so in all sciences. In physics, for
example, Newton’s theory works fine for cars and trains, but not for
space ships.
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1.3 Least squares
Let’s consider the first question first: how do we measure closeness?
If we have n points (xi, yi) and these points would lie precisely on
a line, then yi could be written as yi = β1 + β2xi. In reality, the
points will not lie exactly on the line and there will be deviations,
so I write

yi = β1 + β2xi + ui (i = 1, . . . , n), (1.1)

where the ui denote deviations from the line. If a deviation ui is
zero, then the corresponding point lies precisely on the line, but in
general most or all deviations will not be zero.

I can write (1.1) in matrix form as follows:



y1
y2
...
yn


 =




1 x1
1 x2
...

...
1 xn




(
β1
β2

)
+




u1
u2
...
un




or, for short,
y = Xβ + u. (1.2)

Our problem is to choose β such that the deviations ui are as ‘small’
as possible. There are several ways to define ‘small’ in this context.
The most common (and most important) is to consider the function

φ(β) =

n∑

i=1

u2i = u′u = (y −Xβ)′(y −Xβ),

and minimize this function with respect to β. This method is called
least squares (LS). Let us write

φ(β) = y′y − y′Xβ − β′X ′y + β′X ′Xβ

= y′y − 2y′Xβ + β′X ′Xβ,

where we use the fact that y′Xβ = β′X ′y because the transpose of a
scalar (1×1 matrix) is the same scalar. Then, by the differentiation
rules in Section A.11 of Appendix A,

∂φ(β)

∂β′
= −2y′X + 2β′X ′X.

Setting this derivative equal to zero and transposing, we find the
solution b by solving

X ′Xb = X ′y,
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and this gives
b = (X ′X)−1X ′y, (1.3)

assuming that X ′X is nonsingular (invertible) or, what is the same,
that X has full column rank; see Section A.3.

The solution (1.3) is the least-squares approximation. Given the
data y and X, we may now construct a new variable, say

ŷ = Xb = X(X ′X)−1X ′y, (1.4)

which we can call the predictor of y and which, by construction, lies
precisely on the line.

In the above development I assumed that the X matrix has only
two columns (simple regression), but in finding the least-squares
approximation I did not use this fact at all. In general, the X
matrix will have k columns corresponding to k regressors (multiple
regression). The equation y = Xβ + u, written out in full, would
then look like this:



y1
y2
...
yn


 =




x11 x12 . . . x1k
x21 x22 . . . x2k
...

...
...

xn1 xn2 . . . xnk







β1
β2
...
βk


+




u1
u2
...
un


 .

The element xij denotes the ith observation on the jth regressor.
The first regressor is usually a vector of ones (the constant term),
but this is not necessary.

1.4 An alternative derivation
Whatever the expression for b, I can always decompose u = y−Xβ
as

y −Xβ = (y −Xb) +X(b− β).

Such a decomposition is particularly useful when the two component
vectors are orthogonal to each other. (Two vectors a and b are said
to be orthogonal when a′b = 0.) This is the case here, because

X ′(y −Xb) = X ′y −X ′X(X ′X)−1X ′y = X ′y −X ′y = 0. (1.5)

Hence,

(y −Xβ)′(y −Xβ) = (y −Xb)′(y −Xb) + (b− β)′X ′X(b− β),

which is clearly minimized by choosing β = b.
This proof is simpler because it does not need differentiation,

but it is less appealing, because it is not constructive: you need to
know the answer before you start the proof.
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1.5 Residuals

Where u = y − Xβ denotes the vector of deviations, I now define
the vector of residuals as

e = y −Xb = y −X(X ′X)−1X ′y = My, (1.6)

where
M = In −X(X ′X)−1X ′ (1.7)

is a symmetric idempotent matrix. (A square matrix A is idem-
potent if it satisfies AA = A. Idempotent matrices need not be
symmetric, although in practice most are; see Appendix A.7.) The
deviation vector u is a function of the variable β. If we choose β
‘optimally’ so that β = b, then we obtain the residuals e, which thus
depend only on X and y. Since

MX = (In −X(X ′X)−1X ′)X

= X −X(X ′X)−1X ′X = X −X = 0, (1.8)

we find
X ′e = X ′My = 0, (1.9)

confirming what we have already seen in (1.5).
In most cases, the X matrix contains a vector of ones (the con-

stant term). If this is the case, then the sum of the residuals is zero.
This follows, because the fact that X ′e = 0 shows that each of the
k regressors is orthogonal to the vector of residuals e. In particular,
if there is a constant term, then one of the regressors (typically the
first) is ı, the vector of ones, and hence

n∑

i=1

ei = ı′e = 0. (1.10)

1.6 Geometry

There is a different way to obtain the least-squares solution, not by
algebra but by geometry. Consider two points p and q on a line.
The distance between p and q is defined as

d = |p− q| =
√

(p− q)2.
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The distance between two points p = (p1, p2) and q = (q1, q2) on a
plane is defined as

d =
√

(p1 − q1)2 + (p2 − q2)2 =
√

(p− q)′(p− q),

and, similarly, the distance between p and q in the n-dimensional
Euclidean space Rn is given by

d =
√

(p− q)′(p− q).

Let S(X) be the k-dimensional subspace of Rn containing all
vectors that are linear combinations of the columns of X, that is,
can be represented asXβ for some β in Rk. Now consider two points
in Rn, namely y and a linear combination Xβ of the columns of X.
The distance between these two points is

√
(y −Xβ)′(y −Xβ),

and the shortest distance is obtained when we choose β equal to
b = (X ′X)−1X ′y so that Xb is orthogonal to y −Xb.

e = My y

Xb = (I −M)y

S(X)

Figure 1.3: Geometric interpretation of least squares

In Figure 1.3 we see this demonstrated in two dimensions. The
k-dimensional plane S(X) is represented by the horizontal line. The
vector y is projected onto the space S(X) of the regressors to obtain
the linear combination Xb that is as close as possible to y, and we
see that y decomposes as y = Xb + e, where Xb = (I −M)y and
e = y −Xb = My are orthogonal to each other.
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1.7 Least absolute deviations
Least squares were introduced in Section 1.3 as a means to define
‘closeness’ to a line. This is not the only possible definition of close-
ness. Instead of minimizing the sum of the squared deviations we
could also minimize the sum of the absolute deviations,

φ(β) =

n∑

i=1

|ui|.
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Figure 1.4: Least absolute deviations with three points

The traditional argument against least absolute deviations is
illustrated in Figure 1.4. Here we have only three points at x1 = 40,
x2 = 60, and x3 = 80. The line labeled (1) is the least-squares line,
the same as in the previous figures. The points y1 and y3 lie 10
points above the line, while y2 lies 20 points below the line, so that

e =



e1
e2
e3


 =




10
−20
10




and

X ′e =

(
1 1 1
40 60 80

)


10
−20
10


 =

(
0
0

)
,
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in accordance with (1.9) and (1.10).
The sum of the absolute deviations is 10 + 20 + 10 = 40. If we

move the line 10 points up, we get line (2). Here the sum of the
absolute deviations is 0 + 30 + 0 = 30, which is 10 points lower
then for the line (1). In fact, line (2) is the best possible from the
least absolute deviations point of view: there exists no other line
where the sum of the three absolute deviations is smaller than 30.
(If we consider more than three points then the solution may not
be unique.)

Hence, from the point of view of absolute deviations, line (2) is
better than line (1). Most people find this counterintuitive, because
one would expect the best line to lie somewhere in-between the
points and not at the edge. This is one (but not the only) reason why
least squares is generally preferred above least absolute deviations.
Another reason is that absolute deviations are not differentiable, a
huge disadvantage in theoretical derivations.
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Figure 1.5: Least squares with an outlier

But now consider Figure 1.5. This is the same as Figure 1.2,
except that I have added two points, namely (80, 20) and (90, 10).
Line (1) is the line without the additional points (hence the same as
in Figure 1.2), while line (2) is the line with the additional points.
Clearly, there is a difference between the two regression lines, and
most statisticians would consider this difference large. Adding one
or two points may thus lead to a notably different line. This is also
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unsatisfactory.
In summary, least squares provides a unique solution, but it is

not robust, while least absolute deviations provides a more robust
result, but there are certain disadvantages (nondifferentiability, pos-
sibly multiple solutions). Least absolute deviations is robust in that
it is resistant to outliers in the data. It gives equal emphasis to
all observations, in contrast to least squares which, by squaring the
residuals, gives more weight to large residuals. Least squares is still
the dominant method, but least absolute deviations has also become
popular in the last decade.

1.8 The fit
In Section 1.2 two questions were raised. First, how do we measure
‘closeness’ to the line? This question was answered in Sections 1.3
and 1.7. Second, what do we mean when we say an approximation
is ‘good’? Let me discuss this question now.

By the definition of residuals we have

y = Xb+ e = ŷ + e,

where ŷ = Xb is the predictor. Since X ′e = 0, we have ŷ′e =
b′X ′e = 0 and hence

y′y = ŷ′ŷ + e′e.

Therefore, the ratio
ŷ′ŷ
y′y

= 1− e′e
y′y

lies between zero and one, and it provides the fraction of the vari-
ation of the dependent variable y that can be attributed to the
variation in the explanatory variables X. If the ratio is close to one,
then this signifies that the fitted value is close to the dependent
variable.

In most cases there is a constant term, so that the residuals add
up to zero. Let me introduce the matrix

A = In −
ıı′

n
,

where ı denotes a vector of ones. This is a symmetric idempotent
matrix, because

AA =

(
In −

ıı′

n

)(
In −

ıı′

n

)
= In −

ıı′

n
− ıı′

n
+
ıı′

n
= A,
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since ı′ı = n. (In fact, A is a special case of the matrix M defined
in (1.7) by taking X = ı.) Now, if there is a constant term, then
ı′e = 0 and Ae = e, so that

Ay = AXb+Ae = AXb+ e,

and hence, since (AX)′e = X ′A′e = X ′Ae = X ′e = 0,

y′Ay = b′X ′AXb+ e′e. (1.11)

We express this equality as

SST = SSE + SSR, (1.12)

that is, the total sum of squares (SST) equals the sum of the ex-
plained sum of squares (SSE) and the sum of squared residuals
(SSR). We emphasize that equality only holds when there is a con-
stant term.

The fit of the least-squares approximation is typically assessed
by the coefficient of multiple determination,

R2 = 1− SSR
SST

= 1− e′e
y′Ay

. (1.13)

Provided there is a constant term among the regressors, we have
0 ≤ R2 ≤ 1, but if there is no constant term then R2 can become
negative.

The coefficient R2 is sensitive to the magnitudes of n and k
in small samples, and an adjusted R2 will be introduced later, in
Section 3.14.

1.9 Adding and omitting variables
We have chosen k regressors to approximate y. What would happen
if we choose k − 1 or, more generally, k1 < k regressors. It is easy
to see that the fit would not be as good.

Let us write y = Xβ + u as

y = X1β1 +X2β2 + u, (1.14)

where X = (X1 : X2) is partitioned into an n × k1 matrix X1 and
an n × k2 matrix X2 with k = k1 + k2. Similarly, the k × 1 vector
β is partitioned into two subvectors β1 and β2.

If we only use X1 to approximate y, then we would minimize

φ1(β1) = u′1u1 = (y −X1β1)′(y −X1β1)
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with respect to β1. This is the same as to minimize

φ(β) = u′u = (y −Xβ)′(y −Xβ)

with respect to β under the restriction β2 = 0. The minimum of φ(β)
under a restriction can never be lower than the minimum without
the restriction, and hence the fit obtained using the complete X
matrix must be at least as good as the fit obtained using only X1.

In fact, we can be more precise. If e denotes the vector of resid-
uals from the fit using the complete X matrix, then

e′e = (My)′(My) = y′M ′My = y′MMy = y′My,

because M is symmetric and idempotent (M ′ = M = M2). Simi-
larly, if e1 denotes the vector of residuals from the fit using only X1,
then e′1e1 = y′M1y, where M1 = In −X1(X ′1X1)−1X ′1. Hence, us-
ing the decomposition (A.5) in Section A.10 ofM1 into two positive
semidefinite matrices,

M1 = M +M1X2(X ′2M1X2)−1X ′2M1, (1.15)

we find

e′1e1 − e′e = y′M1y − y′My = e′1X2(X ′2M1X2)−1X ′2e1,

so that

e′e ≤ e′1e1 with equality if and only if X ′2e1 = 0. (1.16)

Apparently, there is no point in adding the new regressors X2 if
these are orthogonal to the residuals e1 obtained from fitting only
X1. The reason is as follows. Let b = (X ′X)−1X ′y be the solution
to the least-squares problem when we fit the complete X matrix.
This vector has subvectors b1 (k1 × 1) and b2 (k2 × 1). We have

X ′2e1 = 0 ⇐⇒ X ′2M1y = 0

⇐⇒ b2 = (X ′2M1X2)−1X ′2M1y = 0,

using (A.4), and hence equality in (1.16) occurs if and only if b2 = 0,
that is, if adding X2 has no effect.

The question whether to add or omit regressors to a model is a
key issue in econometric modelling, and I shall return to it at the
end of Chapters 2 and 3.







2 | Best unbiased
estimation

2.1 Rothenberg’s table
In my office I have a rectangular table. I want to know the length
and width of this table, so I hire an assistant to take one hundred
measurements (xi, yi) of the length x and width y. The assistant
believes (wrongly) that I am only interested in the area A of the
table, so she multiplies each pair of measurements to obtain one
hundred measurements of the area, Ai = xiyi. Then she destroys
the underlying measurements of the length and the width, so that the
only thing we have is one hundred measurements of the area. Can
we still estimate the length and width of the table?

This is indeed possible. Rothenberg (2005) defines measurement
errors

ui = xi − x, vi = yi − y,
and then expresses Ai in terms of these measurement errors,

Ai = xiyi = (x+ ui)(y + vi) = xy + xvi + yui + uivi,

and similarly for A2
i and A3

i . Then he makes certain (credible)
assumptions on these measurement errors and is able to estimate x
and y.

There is a compelling byproduct to this story. If the assistant
is very sloppy, then of course we would not expect to get good es-
timates. But if she is perfect (no measurement errors), then this
is also bad. In that case we would end up with one hundred iden-
tical measurements of the area, so that in effect we only have one
observation. There is no way we can estimate the length and width
from one observation. Apparently, there exists an optimal level of
sloppiness for an assistant and it can be calculated.
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2.2 Observations

The word ‘observation’ is ambiguous. Suppose we do a simple ex-
periment and toss a fair coin one hundred times. Let x denote the
fraction of times that heads comes up. Since the coin is fair we
would expect x to be close to 0.5, but how close? In this case, we
can show that the probability that 0.40 < x < 0.60 is about 95%
and that the probability that 0.37 < x < 0.63 is about 99%.

This was a theoretical experiment. But now let’s actually do it
with a real coin. We toss one hundred times and we find 53 heads
and 47 tails, so that x = 0.53. Now it makes no longer sense to talk
about the probability that 0.53 lies between 0.40 and 0.60. It either
lies in this interval or it doesn’t.

This example demonstrates the difference between a theoretical
observation and a realized observation. A theoretical observation
is a random variable with a probability distribution, while its real-
ization is a number. Some statistical concepts have different words
to distinguish the theoretical concept from its realization. For ex-
ample, an estimator is a random variable, while an estimate is its
realization. But this is an exception. Most statistical concepts —
and ‘observation’ is one of them — have only one word to denote
both. In the previous chapter, observations were realized (given)
data, but now they denote theoretical (random) data.

2.3 The linear model

In Chapter 1 the world was nonstochastic and our only task was
to approximate a cloud of points by a straight line. (The words
‘random’ and ‘stochastic’ are both in common use; they mean the
same.) The real world, however, involves many uncertainties. Some
of these can be modeled and understood, while some remain com-
pletely unpredictable. The simplest model involving stochasticity is
the linear model, which lies at the heart of econometrics and will be
treated in some detail. Of course, the linear model must often be
extended in many directions in order to be applicable in a practical
situation. The power of the linear model lies herein that it allows
such extensions while keeping its key features.

The linear model looks exactly like the approximation equa-
tion (1.2),

y = Xβ + u,

but its interpretation is quite different. In an approximation con-
text, our problem was to choose β such that the deviations ui are
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as small as possible, but in a stochastic framework our problem is
to estimate β.

The random variable y is called the dependent variable on which
we have n observations y1, . . . , yn, collected in the n × 1 vector y.
The dependent variable is related to a set of k explanatory variables
(or regressors) and on each regressor we also have n observations,
which leads to an n× k matrix X. I shall assume, unless otherwise
indicated, that the regressors are nonrandom. The k× 1 vector β is
a vector of k unknown parameters, and u is a random n× 1 vector
whose components are now called disturbances (sometimes errors).

Note that some variables are random (y and u), while others are
nonrandom (X and β), and that some variables are observable (y
and X), while others are not observable (β and u).

2.4 Ideal conditions
A model can be seen as a set of restrictions, and the ideal conditions
consist of five restrictions. The first restriction is linearity.

Assumption 2.1. The model is linear.

What this means is that the model is linear in the β parameters,
not that it is linear in X. For example, the equation

yi = β1 + β2xi + β3x
2
i + ui

is a linear model, even though it is not linear in x. If we think
of approximating a function y = f(X), then the linear function
y = Xβ provides a first-order approximation, so that even if f is in
fact not linear, the linear model may still work well in practice.

Assumption 2.2. The n × k matrix X is nonrandom and has
rank k.

This assumption repeats that X is assumed to be nonrandom
and has full column rank k, which implies that the matrix X ′X is
nonsingular. (Recall from Section A.3 that X and X ′X have the
same rank for any matrix X. Hence, if r(X) = k, then r(X ′X) = k
and since X ′X is a k × k matrix, it is nonsingular.)

Assumption 2.3. The n× 1 vector u has mean zero and variance
σ2In.

This means that all components ui have mean zero, are uncorre-
lated with each other (that is, cov(ui, uj) = 0 for all i 6= j), and have
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a common variance which we denote by σ2. We could equivalently
have written this assumption as

E(y) = Xβ, var(y) = σ2In.

Sometimes the formulation in terms of u is more convenient, some-
times the formulation in terms of y.

Assumption 2.4. The n×1 vector u follows a multivariate normal
distribution.

Together with the previous assumption, normality implies that
the disturbances ui are not only uncorrelated but in fact indepen-
dent; see Section B.3. Why should the disturbances follow a normal
distribution? I offer three reasons. First, the normal distribution
(just as linearity) is easy to work with. This is an important prac-
tical consideration, but of course in itself not sufficient as a reason.

Second, the disturbances may be due to errors in measuring y,
in which case the normality assumption is reasonable because mea-
surement errors are known to be well approximated by a normal
distribution. In fact, the normal distribution was developed in the
context of measurement error.

Third, the normal distribution is very much like the assumption
of linearity in that it serves as an approximation, in this case a
second-order approximation. This can be seen from the appropri-
ate Taylor expansion, as follows. Let f(u) be an arbitrary density
function, not necessarily symmetric, with a maximum at u = 0 (the
mode). Since the derivative of f vanishes at the mode, we obtain
from (A.7):

log f(u) ≈ log f(0) + (1/2)u′H(0)u,

where the symbol ≈ means ‘is approximately equal to’ and

H(u) =
∂2 log f(u)

∂u ∂u′

is the Hessian matrix. Hence,

f(u) ≈ f(0) exp[(−1/2)u′(−H(0))u],

which we recognize as the normal distribution with mean zero and
variance [−H(0)]−1; see (B.2). This tells us that the normal dis-
tribution serves as a good approximation to an arbitrary density
function, certainly in the center of the distribution.



Best unbiased estimation 19

Assumption 2.5. If we let Qn = X ′X/n, then Qn → Q as n→∞,
where Q is a finite and positive definite k × k matrix.

This assumption concerns the asymptotic behavior of the matrix
X ′X. If xij denotes the ith observation on the jth regressor, then
the jth diagonal element of X ′X is given by

(X ′X)jj =

n∑

i=1

x2ij .

If the first regressor is the constant term, as is often the case, then
(X ′X)11 = n and (Qn)11 = 1 for all n. Clearly, the diagonal ele-
ments of X ′X will increase with n, but they should not increase too
fast (in which case some of the elements of Qn go to∞) or too slow
(in which case Qn will become singular). We shall not be concerned
with asymptotics until Chapter 5.

Normality and linearity thus play similar roles in our setup: lin-
earity is a first-order approximation to the model and normality is
a second-order approximation to the distribution.

2.5 Model and data-generation process

Data are generated by some process and we call this process the
data-generation process (DGP). A model tries to approximate the
DGP but it will not be equal to the DGP, unless in truly exceptional
and simplified situations.

In what follows I shall usually assume that model and DGP
coincide, but not always. For example, the DGP may take the form

y = X1β1 +X2β2 + u

while the model may be

y = X1β1 + u1.

This is a common situation, where reality (the DGP) is more com-
plex than the model we wish or are able to consider.

Perhaps we know that X2 plays a role but we have no data on
these regressors. Then we simply cannot include X2. But even if we
did have data on X2 we may wish to exclude these regressors from
our model. This is somewhat puzzling and counterintuitive. Why
would we willingly misspecify the model? I will come back to this
important issue in Sections 2.16 and 2.18.
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2.6 The usefulness of sloppy notation

It is neither possible nor desirable to be completely accurate in
notation. Always one has to compromise between readability and
accurateness. This is usually no problem, but it is important to be
aware of it.

For example, when I write β it can mean a variable over which
we wish to optimize, as in minimizing (y − Xβ)′(y − Xβ). But it
can also mean the specific ‘true’ value of the parameter, which we
denote by β0 if we wish to emphasize it.

This is particularly important when we take expectations. When
I write E(y) = Xβ, I always take the expectation with respect to
the DGP (the ‘true’ model), and I should, strictly speaking, write
E(y) = Xβ0, because β here denotes a specific value, corresponding
to the DGP.

2.7 Why is X nonrandom?

I have chosen for the assumption that X is nonrandom. This used
to be the standard assumption in basic econometrics, but now it is
often considered old-fashioned. Hence some defense is called for.

There are situations (for example in experiments) where the re-
searcher can choose the design matrix X, which is then nonrandom
by construction. But in most cases it is more realistic and more
general to assume that the observations (y,X) are generated by
some joint distribution. The assumptions of the previous section
must then be adjusted. For example, instead of Assumption 2.3 we
would now write

E(u|X) = 0, var(u|X) = σ2In.

The condition E(u|X) = 0 is sometimes called (strong) exogeneity.
Against the advantage of greater generality there is one impor-

tant disadvantage, namely that we now have to work with condi-
tional distributions and conditional moments. Conditioning is the
most difficult part of probability theory. One could argue that with-
out a proper understanding of conditioning one cannot be a good
econometrician (and there is much in favor to be said for such a
viewpoint), but the basics of econometric theory do not change if
we make this simplifying assumption and the material is easier to
grasp. This is my defense. I shall discuss conditioning in Chapter 6.
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2.8 The principle of best unbiased estimation

Estimation is something quite different than approximation. We
wish to construct estimators (in our case, of β and σ2) that have
certain desired sampling properties, given our assumptions. In or-
der to do this we need some guidance on what we mean by a ‘good’
estimator. In this little book two such guiding principles will be dis-
cussed: best unbiased estimation (current chapter) and maximum
likelihood (Chapter 4).

The principle of best unbiased estimation is simple and intuitive.
Given a parameter θ we consider the class of all unbiased estimators
θ̂ of θ, that is, estimators for which E(θ̂) = θ, and in this class we
choose the one with the smallest variance (that is, the ‘best’).

In general, the class of unbiased estimators does not have enough
structure to find a unique best estimator, and we need to restrict
this class further, for example by requiring the distribution to be
normal or the estimator to be linear. We shall see examples of this
in the sequel.

Unbiasedness is often regarded as a desirable property for an
estimator to have, and the current chapter takes unbiasedness as
its starting point. For linear estimators unbiasedness make much
sense, but for nonlinear estimators this is less obvious. For example,
if s2 is an unbiased estimator of σ2, what can we say about s as
an estimator of σ? This estimator is biased, which follows from
Jensen’s inequality : f(E(x)) ≤ E(f(x)) for any convex function f .
Letting f(x) = x2 (convex), we have (E s)2 ≤ E(s2) = σ2 and hence
E(s) ≤ σ.

If θ is a vector then var(θ̂) will be a matrix, and we need to define
what we mean by saying that one matrix is smaller than another.
Thus, for two symmetric matrices A and B, we shall say that A is
smaller than (or equal to) B and we write A ≤ B (or B ≥ A) when
B − A is positive semidefinite, and we write A < B (or B > A)
when B −A is positive definite.

2.9 Estimation of a linear combination of the βs

Let’s assume that we have a model which coincides with the DGP,
however unlikely that may seem, and that Assumptions 2.1–2.3 hold.
That is, we consider a model y = Xβ + u, where X is nonrandom
and of full column-rank and where E(u) = 0 and var(u) = σ2In.
We first concentrate on the estimation of β. We shall discuss the
estimation of σ2 in Section 2.12.
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The fact that β is a vector rather than a scalar causes some
difficulties that will be clarified in the next section. So let’s begin
by trying to estimate a simple scalar function of the βs, namely
a linear combination, say w′β. The vector w could be anything,
for example w′ = (0, 1, 0, 0, . . . , 0) in which case we estimate one
component β2, or w′ = (0, 1, 1, 0, . . . , 0) in which case we estimate
the sum β2 + β3.

Let θ = w′β be the parameter to be estimated. Since β is a mean
parameter (a linear concept), it makes sense to base estimation of
θ on a linear function of the data. Thus, we write our estimator as
θ̂ = a′y, where a is to be chosen ‘optimally’ in some sense. We are
now dealing with a linear estimator in a linear model, and hence it
also makes sense to require that this estimator is unbiased (also a
linear concept):

E(θ̂) = E(a′y) = a′Xβ = w′β

for all β, implying that X ′a = w.
This places a restriction on the vector a, but it does not yet fully

determine a. We need more, so let’s calculate the variance:

var(θ̂) = var(a′y) = a′ var(y) a = a′(σ2In) a = σ2a′a.

Suppose now that we can choose a such that the variance of θ̂ is min-
imized under the restrictions of linearity and unbiasedness. Then
we obtain an estimator which is ‘best’ (minimum variance) in the
class of linear unbiased estimators, that is, a best linear unbiased
estimator (BLUE). The obtain the BLUE we thus need to minimize
a′a subject to the restriction X ′a = w. This requires Lagrangian
theory.

We define the Lagrangian function

ψ(a) = a′a/2− l′(X ′a− w)

where l is a vector of Lagrangian multipliers. (Note that I write
a′a/2 rather than a′a. This makes no difference, since any a which
minimizes a′a will also minimize a′a/2, but it is a common trick
since we know that we minimize a quadratic function so that a 2
will appear in the derivative. The 1/2 neutralizes this 2.)

The derivative is
∂ψ

∂a′
= a′ − l′X ′,

and hence the first-order conditions are

a = Xl, X ′a = w.
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This gives
w = X ′a = X ′Xl,

so that l = (X ′X)−1w and a = Xl = X(X ′X)−1w.
We should verify that the solution a indeed minimizes φ(a) =

a′a/2 under the constraint g(a) = X ′a − w. This is easy here, be-
cause the constraint g is linear and the function φ is strictly convex.
This implies that ψ is also strictly convex so that, using the re-
sults in Section A.13, φ(a) attains a strict absolute minimum at the
solution a = X(X ′X)−1w under the constraint X ′a = w. Hence,
θ̂ = a′y = w′(X ′X)−1X ′y is BLUE, that is, it has the lowest vari-
ance in the class of linear unbiased estimators of θ. Summarizing,
we have proved the following result.

Proposition 2.1. Under Assumptions 2.1–2.3 the estimator w′β̂
with β̂ = (X ′X)−1X ′y is the best linear unbiased estimator (BLUE)
of w′β.

What we have done is apply the principle of best unbiased es-
timation to the parameter w′β by adding the restriction that the
estimator is linear (in y). The fact that w′β̂ is the BLUE of w′β for
any choice of the vector w suggests that β̂ is perhaps the BLUE of
β, and this is indeed the case. But it is something that needs to be
shown, and we shall do so in the next section.

We recognize β̂ as the least-squares approximator b of the pre-
vious chapter. So, while we started this section by stating that
estimation is something quite different than approximation, it turns
out that the approximator b of the previous chapter and the estima-
tor β̂ are in fact identical. This is neither obvious nor trivial. The
estimator β̂ is typically called the ‘least-squares’ (LS) estimator of
β, which is fine as long as we remember that least squares is an
approximation principle, not an estimation principle.

2.10 Estimation of β
Now let’s try to repeat this analysis for a parameter vector θ = W ′β,
where W is now a matrix rather than a vector. Again, we wish to
estimate θ as a linear function of y, say θ̂ = A′y, where the matrix A
should be chosen ‘optimally’ in some sense. Imposing unbiasedness
gives

E(θ̂) = E(A′y) = A′Xβ = W ′β

for all β, implying that X ′A = W . Using (B.1) the variance is

var(θ̂) = var(A′y) = A′ var(y)A = A′(σ2In)A = σ2A′A.
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As in the previous section we ask whether we can choose the matrix
A such that the variance of θ̂ is minimized under the restrictions
of linearity and unbiasedness. If we can, then we have obtained
an estimator which is ‘best’ (minimum variance) in the class of lin-
ear unbiased estimators, that is, a best linear unbiased estimator
(BLUE).

Before we can answer this question two difficulties need to be
resolved. First, what do we mean by saying that a matrix is ‘small’?
For real scalars we know what we mean by a ≤ b, but what do we
mean by A ≤ B? This issue was resolved in Section 2.8: a symmetric
matrix A is smaller than (or equal to) a symmetric matrix B if and
only if B − A is positive semidefinite, and we write this as A ≤ B
or B ≥ A.

The second difficulty is that we cannot use calculus to minimize
matrix functions. Calculus and Lagrangian theory are designed for
scalar functions, not for matrix functions.

But we can still minimize, even without using calculus. We need
to minimize A′A subject to the restriction X ′A = W . Let us define
D = A − X(X ′X)−1W . Then X ′A = W if and only if X ′D = 0,
and under this restriction we have

A′A =
(
D′ +W ′(X ′X)−1X ′

) (
D +X(X ′X)−1W

)

= D′D +W ′(X ′X)−1W ≥W ′(X ′X)−1W

with equality if and only if D = 0. Hence, under the restriction
X ′A = W , the matrix A′A achieves a lower bound and this lower
bound is reached when D = 0, that is, when A = X(X ′X)−1W so
that θ̂ = A′y = W ′(X ′X)−1X ′y = W ′β̂. This demonstrates the
following extension of Proposition 2.1.

Proposition 2.2. Under Assumptions 2.1–2.3 the estimator W ′β̂
is the best linear unbiased estimator (BLUE) of W ′β.

Since this holds for any matrix W , it holds in particular when
we choose W = Ik.

Proposition 2.3 (Gauss-Markov). Under Assumptions 2.1–2.3 the
least-squares estimator β̂ = (X ′X)−1X ′y is the best linear unbiased
estimator (BLUE) of β.

This is the famous Gauss-Markov theorem, named after the Ger-
man mathematician Johann Carl Friedrich Gauss (1777–1855) and
the Russian probabilist Andrey Andreyevich Markov (1856–1922).
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It tells us that in the class of linear unbiased estimators there is no
estimator better (that is, with lower variance) than β̂.

Notice that we have restricted the class of unbiased estimators
by imposing linearity of the estimator, but we did not need the
normality of the disturbances (Assumption 2.4). We shall see later
(Section 4.7) that if we assume normality of the disturbances we
need not impose linearity of the estimator.

Obviously, E(β̂) = β, because it was constructed to be unbiased.
And indeed, we have

E(β̂) = E
(
(X ′X)−1X ′y

)
= (X ′X)−1X ′ E(y)

= (X ′X)−1X ′Xβ = β. (2.1)

The variance is

var(β̂) = var
(
(X ′X)−1X ′y

)
= (X ′X)−1X ′ var(y)X(X ′X)−1

= (X ′X)−1X ′σ2InX(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1, (2.2)

and we see that the variance is ‘large’ if there is large variation in
the disturbances (large σ2) or small variation in the regressors (so
that X ′X is ‘small’ and (X ′X)−1 is ‘large’).

2.11 Residuals again
We encountered residuals in Section 1.5, but we reconsider them
here, because now they are random. In accordance with (1.6) we
have

e = y −Xβ̂ = My = Mu, (2.3)

where we recall from Section 1.5 that M = In −X(X ′X)−1X ′ and
MX = 0, so that X ′e = 0. This gives

E(e) = E(Mu) = 0 (2.4)

and
var(e) = var(Mu) = M var(u)M = σ2M. (2.5)

The residuals are constrained by X ′e = 0 and hence their variance
matrix cannot have full rank. This is confirmed by (2.5) since M is
of order n× n but its rank is only n− k (Appendix A.8).

The observable residuals e provide information about the unob-
servable disturbances u, but this information is not complete since
k ‘degrees of freedom’ have been lost in the estimation process.
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2.12 Estimation of σ2

The linear model contains mean parameters β but also a variance
parameter σ2. We have seen how to estimate β. Let us now consider
how to estimate σ2, again applying the principle of best unbiased
estimation.

A variance is a quadratic concept and therefore it makes little
sense to construct a linear estimator of σ2. But we can try to find
a quadratic estimator, say s2 = y′By, where we let B be positive
semidefinite since s2 must be nonnegative. We write s2 as

s2 = y′By = (Xβ + u)′B(Xβ + u)

= u′Bu+ 2β′X ′Bu+ β′X ′BXβ,

and take expectations. This gives

E(s2) = E(u′Bu) + β′X ′BXβ = σ2 tr(B) + β′X ′BXβ,

since

E(u′Bu) = E tr(Buu′) = tr E(Buu′) = tr(B(σ2In)) = σ2 tr(B).

Unbiasedness of s2 requires tr(B) = 1 and X ′BX = 0 (since X ′BX
is symmetric, see Section A.5). The latter condition is equivalent to
BX = 0 since B is positive semidefinite, see again Section A.5. Now,
we know one positive semidefinite matrix which satisfies BX = 0,
namely M . Its trace is tr(M) = n − k; see Appendix A.8. Hence,
if we choose B = M/(n− k), then both constraints are satisfied, so
that

s2 =
y′My

n− k =
e′e
n− k (2.6)

is an unbiased estimator of σ2.
Of course, the matrix M is not the only positive semidefinite

matrix satisfying BX = 0. We know that s2 is unbiased but we
don’t know anything yet about other desirable properties. If, how-
ever, we add the assumption that the disturbances are normally
distributed with mean zero and variance σ2In, then one can show
(but we won’t) that s2 is best in the class of quadratic unbiased
estimators in the sense that it achieves the lowest variance in that
class.

Thus, while in the case of best unbiased estimation of β we added
the restriction that the estimator is linear, here we need to add the
restriction that the estimator is quadratic and also normality of y
in order to obtain the best estimator; see also the discussion in
Section 4.7.
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2.13 Prediction
Suppose that we have estimated the linear model y = Xβ+u given
observations (y,X). Now we are given an m × k matrix X∗ and
we want to know how to ‘predict’ the corresponding value for y.
(Prediction has nothing to do with the future, forecasting does.)

In order to answer this question we shall assume that the stan-
dard linear model is also valid for these new observations, so that

y∗ = X∗β + u∗,

where u∗ has mean zero, variance σ2Im, and is uncorrelated with u.
Our predictor will be

ŷ∗ = X∗β̂ = X∗(X
′X)−1X ′y, (2.7)

in accordance with (1.4), and we want to know its properties. Of
course, we have

E(ŷ∗) = X∗β, var(ŷ∗) = σ2X∗(X
′X)−1X ′∗.

There are two ways to approach the prediction problem: we could
be interested in E(y∗) = X∗β or in y∗ itself.

If we are interested in E(y∗) = X∗β, then Proposition 2.2 implies
that ŷ∗ = X∗β̂ is the best linear unbiased estimator of X∗β.

If we are interested in y∗ itself, then we should first realize that
y∗ is a random vector. Hence, strictly speaking, we cannot estimate
it, because estimation is something that applies to nonrandom quan-
tities, called parameters, not to random variables. We can, however,
predict y∗ as follows.

Define the prediction error

ŷ∗ − y∗ = X∗(β̂ − β)− u∗ = X∗(X
′X)−1X ′u− u∗.

The prediction error has mean zero and variance

var(ŷ∗ − y∗) = σ2
(
X∗(X

′X)−1X ′∗ + Im
)
.

Let A′y be another linear predictor of y∗. Its prediction error is

A′y − y∗ = (A′X −X∗)β +A′u− u∗.

Now define, as in Section 2.10,

D = A−X(X ′X)−1X ′∗.
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Then,

A′y − y∗ = D′Xβ + (D′ +X∗(X
′X)−1X ′)u− u∗.

The predictor is said to be unbiased if the prediction error has mean
zero for all β, and this is the case if and only if D′X = 0. Under
this restriction, the prediction error variance is

var(A′y − y∗) = σ2
(
D′D +X∗(X

′X)−1X ′∗) + Im
)
,

which is minimized when D′D = 0, that is, when D = 0. This
shows that A = X(X ′X)−1X ′∗ and hence that

A′y = X∗(X
′X)−1X ′y = X∗β̂

is the best linear unbiased predictor of y∗.

2.14 Restricted versus unrestricted model

In Section 1.9 we considered the two models

y = X1β1 +X2β2 + u, (2.8)

which we shall now call the ‘unrestricted’ model, and

y = X1β1 + u1, (2.9)

which we shall call the ‘restricted’ model, where the restriction is
β2 = 0. We assume that the data are generated by (2.8), so that
the unrestricted model coincides with the DGP and the smaller
restricted model is underspecified.

The estimator of β1 in the restricted model is of course

β̂1r = (X ′1X1)−1X ′1y, (2.10)

while the estimator of β in the unrestricted model is given by

β̂u =

(
β̂1u
β̂2u

)
= (X ′X)−1X ′y,

where we can write the two subvectors as
(
β̂1u
β̂2u

)
=

(
β̂1r − (X ′1X1)−1X ′1X2β̂2u

(X ′2M1X2)−1X ′2M1y

)
, (2.11)
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in view of (A.4). In the restricted model we find the mean and
variance as

E(β̂1r) = β1 + (X ′1X1)−1X ′1X2β2, var(β̂1r) = σ2(X ′1X1)−1,
(2.12)

while in the unrestricted model the two estimators are unbiased,

E(β̂1u) = β1, E(β̂2u) = β2,

and their variances are given by

var(β̂1u) = σ2
(
(X ′1X1)−1 + ∆

)
(2.13)

and
var(β̂2u) = σ2(X ′2M1X2)−1, (2.14)

respectively, where

∆ = (X ′1X1)−1X ′1X2(X ′2M1X2)−1X ′2X1(X ′1X1)−1.

The two estimators β̂1r and β̂1u of β1 are always correlated, while
β̂1u and β̂2u are only uncorrelated when X ′1X2 = 0. In contrast, β̂1r
and β̂2u are always uncorrelated. This follows because M1X1 = 0
and hence cov(X ′1y,X

′
2M1y) = σ2X ′1M1X2 = 0.

2.15 Mean squared error comparisons
In the previous section we obtained the first two moments of the
restricted and the unrestricted estimators. This gives us two esti-
mators of β1, but how can we compare them?

If we compare two unbiased estimators, then we prefer the esti-
mator with the lowest variance. But if we compare two estimators
of which at least one is biased, then this is not a good strategy. Sup-
pose for example that we wish to estimate θ. We have an unbiased
estimator θ̂1 and also a biased estimator θ̂2. Let’s take θ̂2 = 0, a
rather silly estimator, but simple. This estimator is biased (unless
θ happens to be zero) but its variance is small, in fact zero. In such
cases we can compare the mean squared errors, which take both bias
and variance into account; see Section B.2. In the current example
we have MSE(θ̂1) = var(θ̂1) and MSE(θ̂2) = θ2, so that

MSE(θ̂1) ≤ MSE(θ̂2) ⇐⇒ var(θ̂1) ≤ θ2.

This means that we prefer θ̂1 unless the parameter θ is close to zero;
then we prefer θ̂2 = 0.
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Let us now obtain the bias and the mean squared error of the
two estimators of β1 and compare them. The unrestricted estimator
β̂1u is unbiased, but the restricted estimator β̂1r is biased and its
bias is

bias(β̂1r) = E(β̂1r − β1) = (X ′1X1)−1X ′1X2β2. (2.15)

The mean squared errors of these two estimators are given by

Vr = MSE(β̂1r) = var(β̂1r) +
(
bias(β̂1r)

)(
bias(β̂1r)

)′

= σ2(X ′1X1)−1 + (X ′1X1)−1X ′1X2β2β
′
2X
′
2X1(X ′1X1)−1

and
Vu = MSE(β̂1u) = var(β̂1u) = σ2(X ′1X1)−1 + σ2∆,

so that

Vr ≥ Vu ⇐⇒ X ′1X2β2β
′
2X
′
2X1 ≥ σ2X ′1X2(X ′2M1X2)−1X ′2X1.

(2.16)
The condition in (2.16) is somewhat complicated. It is true that

β′2X
′
2M1X2β2
σ2

≤ 1 =⇒ β2β
′
2 ≤ σ2(X ′2M1X2)−1 =⇒ Vr ≤ Vu,

but this condition is only sufficient, not necessary. However, in the
special case k1 = k − 1 and k2 = 1 the condition is both necessary
and sufficient and we find

Vr ≥ Vu ⇐⇒ β2
2X
′
1x2x

′
2X1 ≥

σ2

x′2M1x2
X ′1x2x

′
2X1,

and hence, assuming that X ′1x2 6= 0,

Vr ≥ Vu ⇐⇒
|β2|√

σ2/x′2M1x2
≥ 1. (2.17)

Let’s try to understand this result. If |β2| is large then X2 is appar-
ently an important regressor and we should include it in the model.
On the other hand, if var(β̂2u) = σ2/x′2M1x2 is large, then we don’t
learn much by including β2 because we can’t estimate it very pre-
cisely. So we want to include X2 if either |β2| is large or σ2/x′2M1x2
is small or both.
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2.16 Significance and importance
The previous discussion also provides an answer to the following
puzzle. Suppose you are an econometrician working on a problem
and some famous expert comes by, looks over your shoulder, and
tells you that she knows the data-generation process. Of course,
you yourself don’t know the DGP. You use models but you don’t
know the truth; this expert does. Not only does the expert know
the DGP but she is also willing to tell you, that is, she tells you the
specification, not the actual parameter values. So now, you actually
have the true model. What next? Is this the model that you are
going to estimate?

The answer, surprisingly perhaps, is no. The truth, in general,
is complex and contains many parameters, nonlinearities, and so
on. All of these need to be estimated and this will produce large
standard errors. There will be no bias if our model happens to
coincide with the truth, but there will be large standard errors. A
smaller model will have biased estimates but also smaller standard
errors. Now, if we have a parameter in the true model whose value is
small (so that the associated regressor is unimportant), then setting
this parameter to zero will cause a small bias, because the size of
the bias depends on the size of the deleted parameter:

bias(β̂1r) = (X ′1X1)−1X ′1X2β2,

according to (2.15). Setting this unimportant parameter to zero
also means that we don’t have to estimate it. The variance of the
parameters of interest will therefore decrease, because

var(β̂1u)− var(β̂1r)

= σ2(X ′1X1)−1X ′1X2(X ′2M1X2)−1X ′2X1(X ′1X1)−1 ≥ 0,

using (2.12) and (2.14), and this decrease does not depend on the
size of the deleted parameter. Thus, deleting a small unimportant
parameter from the model is generally a good idea, because we will
incur a small bias but may gain much precision.

This is true even if the estimated parameter happens to be highly
‘significant’, that is, have a large t-ratio, anticipating a concept that
will be introduced in Section 3.5. Significance indicates that we
have managed to estimate the parameter rather precisely, possibly
because we have many observations. It does not mean that the
parameter is important; see the discussion in Section 3.15.

We should therefore omit from the model all aspects that have
little impact, so that we end up with a small model — one, which
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captures the essence of our problem. As Einstein puts it: ‘As simple
as possible, but not simpler’.

2.17 Ottolenghi’s ratatouille

I make a rather good ratatouille, based on a recipe from star chef
Yotam Ottolenghi. Occasionally some friends drop by for dinner,
usually unannounced, but expecting my ratatouille. Typically, I have
some, but not all, ingredients at hand, so I have to improvise.

On a recent visit of my friends I had in stock: onions, gar-
lic cloves, tomatoes, tomato purée, courgette, fresh coriander, rice,
sunflower oil, caster sugar, and salt and black pepper. But I did not
have the other required ingredients: fresh green chilli, red peppers,
butternut squash, parsnip, French beans, aubergine, and potatoes.
So I made the dish with what I had. Actually, the ratatouille tasted
all right, although not quite as tasty as it is supposed to be.

A week later my friends dropped by again, and this time I had,
in addition to all ingredients from last week, fresh green chilli and
red peppers. Still not complete, but more complete than a week ago.
Strangely, the ratatouille did not taste as good as one week ago.

This created a puzzle and a debate. How is it possible that getting
closer to the true ingredients does not get us closer to the true taste?
Of course, adding all ingredients creates the true taste as intended
by Ottolenghi, but it seems that adding only some of them may not
lead to an improvement. An addition in itself is not necessarily an
improvement, it must be a ‘balanced’ addition.

2.18 Balanced addition

Let’s continue our discussion on adding and omitting variables. The
results in Sections 2.14–2.16 show what happens when we omit rel-
evant variables. On the one hand we get biased estimators (which
is bad), on the other hand the variance decreases (which is good),
since var(β̂1r) ≤ var(β̂1u).

However, this conclusion is only true when we compare the re-
stricted model with an unrestricted model which coincides with the
DGP. If, which is much more likely, we compare two models one
of which is small (the restricted model) and the other is somewhat
larger (the unrestricted model), but both are smaller than the DGP,
then the estimator from the unrestricted model is also biased and, in
fact, this bias may be larger than the bias from the restricted model.
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This is what happened in the two partial executions of Ottolenghi’s
ratatouille.

Adding variables does not necessarily decrease the bias. The
addition must be ‘balanced’. But what is balanced? Since we don’t
know the DGP it is not easy to know whether an addition will be
balanced or not. The application of econometrics requires more than
mastering a collection of tricks. It also requires insight, intuition,
and common sense.
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