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1. Introduction 

The exponential function e x is one of the most important functions in mathematics and its history goes back to the

brothers Jacob and Johann Bernoulli in the late 17th century. The matrix exponential e X is more complicated and it was not

introduced until the late 19th century by Sylvester, Laguerre, and Peano. 

The matrix exponential plays an important role in the solution of systems of ordinary differential equations 

( Bellman, 1970 ), multivariate Ornstein–Uhlenbeck processes ( Bergstrom, 1984 and Section 9 below), and continuous-time 

Markov chains defined over a discrete state space ( Cerdà-Alabern, 2013 ). The matrix exponential is also used in modelling

positive definiteness ( Linton, 1993; Kawakatsu, 2006 ) and orthogonality ( Section 10 below), as e X is positive definite when

X is symmetric and orthogonal when X is skew-symmetric. 

The derivative of e x is the function itself, but this is no longer true for the matrix exponential (unless the matrix is

diagonal). We can obtain the derivative (Jacobian) directly from the power series, or as a block of the exponential in an

augmented matrix, or as an integral. We shall review these three approaches, but they all involve either infinite sums or

integrals, and the numerical methods required for computing the Jacobian are not trivial ( Chen and Zadrozny, 2001; Tsai

and Chan, 2003; Fung, 2004 ). 
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The purpose of this paper is to provide a closed-form expression which is easy to compute, is applicable to both defective

and nondefective real matrices, and has no restrictions on the number of parameters that characterize X . 

We have organized the paper as follows. In Section 2 we discuss and review the matrix exponential function. Three ex-

pressions for its Jacobian ( Propositions 1 –3 ) are presented in Section 3 together with some background and history. These

results are not new. Our main result is Theorem 1 which is new and is presented in Section 4 and discussed in Section 5 . In

Sections 6 and 7 we apply Theorem 1 to defective and nondefective matrices ( Theorem 2 ) and discuss structural restrictions

such as symmetry and skew-symmetry. In Section 8 we derive the Hessian matrix ( Theorem 3 ). Two applications in macroe-

conometrics demonstrate the usefulness of our results: a continuous-time multivariate Ornstein–Uhlenbeck process for stock 

variables observed at equidistant points in time ( Section 9 ) and a structural vector autoregression with non-Gaussian shocks 

( Section 10 ). In both cases, we explain how to use our main result to obtain the loglikelihood scores and information matrix

in closed form. In Section 11 we further illustrate the usefulness of our analytical expressions in an empirical application

which analyzes the economic impact of macro and financial uncertainty by means of a trivariate structural Var model for 

monthly observations from August 1960 to April 2015 on a macro uncertainty index, a financial uncertainty index, and the 

rate of growth of the industrial production index. Section 12 concludes. The appendix contains all proofs. As a byproduct, 

Lemma 2 in the Appendix presents an alternative expression for the characteristic (and moment-generating) function of the 

beta distribution, which is valid for integer values of its two shape parameters. 

2. The exponential function 

Let A be a real matrix of order n × n . The exponential function, denoted by exp (A ) or e A , is defined as 

e A = 

∞ ∑ 

k =0 

A 

k 

k ! 
= I n + 

∞ ∑ 

k =0 

A 

k +1 

(k + 1)! 
, (1) 

and it exists for all A because ‖ A 

n ‖ ≤ ‖ A ‖ n and e ‖ A ‖ converges absolutely. We mention two well-known properties. First, we

have 

e (A + B ) t = e At e Bt for all t ⇐⇒ A and B commute , 

so that e A + B = e A e B when A and B commute, but not in general. Second, as a special case, we have e A (s + t) = e As e At , and

hence, upon setting s = −t, 

e −At e At = I n , 

so that e At is nonsingular and its inverse is e −At . 

Let us introduce the n × n ‘shift’ matrix 

E n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 . . . 0 0 

0 0 1 . . . 0 0 

0 0 0 . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 . . . 0 1 

0 0 0 . . . 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

which is nilpotent of index n, that is E n n = 0 , and has various other properties of interest; see Abadir and Magnus ( 2005 ,

Section 7.5). The Jordan decomposition theorem states that there exists a nonsingular matrix T such that T −1 AT = J, where

J = diag (J 1 , . . . , J m 

) , J i = λi I n i + E n i . (2) 

The matrix J thus contains m Jordan blocks J i , where the λ’s need not be distinct and n 1 + · · · + n m 

= n . Since I n and E n 
commute, we have 

exp (J i ) = exp (λi I n i ) exp (E n i ) = e λi 

n i −1 ∑ 

k =0 

1 

k ! 
E k n i 

(3) 

and 

e A = T e J T −1 , e J = diag (e J 1 , . . . , e J m ) . (4) 

3. First differential 

We are interested in the derivative of F (X ) = exp (X ) . The simplest case is X(t) = At, where t is a scalar and A is a matrix

of constants. Then, 

d e At = Ae At d t = e At A d t, (5) 

as can be verified directly from the definition. 
2 
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The general case is less trivial. Without making any assumptions about the structure of X, the differential of X k +1 is 

d X 

k +1 = (d X ) X 

k + X (dX ) X 

k −1 + · · · + X 

k (dX ) , 

and hence the differential of F is 

d F = 

∞ ∑ 

k =0 

d X 

k +1 

(k + 1)! 
= 

∞ ∑ 

k =0 

C k +1 

(k + 1)! 
, C k +1 = 

k ∑ 

j=0 

X 

j (d X ) X 

k − j ;

see Magnus and Neudecker ( 2019 , Miscellaneous Exercise 8.9, p. 188). To obtain the Jacobian we vectorize F and X . This

gives 

d vec F = 

∞ ∑ 

k =0 

vec C k +1 

(k + 1)! 
= 

∞ ∑ 

k =0 

k ∑ 

j=0 

(
(X 

′ ) k − j 
� X 

j 
)

d vec X 

(k + 1)! 
. 

Thus, we have proved the following result. 

Proposition 1. The Jacobian of the exponential function F (X ) = exp (X ) is given by 

∇(X ) = 

∂ vec F 

∂( vec X ) ′ = 

∞ ∑ 

k =0 

∇ k +1 (X ) 

(k + 1)! 
, 

where 

∇ k +1 (X ) = 

k ∑ 

j=0 

(
(X 

′ ) k − j 
� X 

j 
)
. 

The Jacobian can also be obtained as the appropriate submatrix of an augmented matrix, following ideas in van Loan

(1978, pp. 395–396) . Since (
A C 
0 B 

)k +1 

= 

(
A 

k +1 �k +1 

0 B 

k +1 

)
, �k +1 = 

k ∑ 

j=0 

A 

j CB 

k − j , 

we obtain 

exp 

(
A C 
0 B 

)
= 

(
e A �
0 e B 

)
, � = 

∞ ∑ 

k =0 

�k +1 

(k + 1)! 
, (6) 

which holds for any square matrices A, B, and C of the same order. 

Proposition 2. We have 

exp 

(
X dX 

0 X 

)
= 

(
e X de X 

0 e X 

)
and 

exp 

(
X 

′ 
� I n I n � I n 
0 I n � X 

)
= 

(
(e X ) ′ � I n ∇(X ) 

0 I n � e X 

)
. 

The two results are obtained by appropriate choices of A, B, and C in (6) . For the first equation we choose A = B = X and

 = dX, and use fact that 

� = 

∞ ∑ 

k =0 

C k +1 

(k + 1)! 
= de X ;

see Mathias ( 1996 , Theorem 2.1). The result holds, in fact, much more generally; see Naifeld and Havel (1995) . For the

second equation in Proposition 2 we choose A = X ′ � I n , B = I n � X, and C = I n � I n ; see Chen and Zadrozny ( 2001 , Eq. (2.6)).

This equation thus provides the Jacobian as the appropriate submatrix of the augmented exponential. In contrast, the first 

equation of Proposition 2 provides matrices of partial derivatives. Letting X = X(t) , the partial derivatives of exp (X(t)) can

thus be found from 

exp 

(
X ∂ X (t) /∂ t i 
0 X 

)
= 

(
e X ∂ e X(t) /∂ t i 
0 e X 

)
. (7) 

The somewhat trivial result (5) has a direct consequence which is rather less trivial. Differentiating F (t) = e (A + B ) t − e At gives 

dF (t) = (A + B ) e (A + B ) t dt − Ae At dt = AF (t) dt + Be (A + B ) t dt, 
3 
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and hence 

d 
(
e −At F (t) 

)
= −Ae −At F (t) d t + e −At d F (t) = e −At Be (A + B ) t dt. 

This leads to 

e (A + B ) t − e At = 

∫ t 

0 

e A (t−s ) Be (A + B ) s ds, (8) 

and hence to our third representation. 

Proposition 3. We have 

∇(X ) = 

∂ vec F 

∂( vec X ) ′ = (I n � e X ) 

∫ 1 

0 

(e Xs ) ′ � e −Xs ds 

= (I n � e X ) 

∫ 1 

0 

e (X ′ �I n −I n �X ) s ds 

= (I n � e X ) 
∞ ∑ 

k =0 

1 

(k + 1)! 
(X 

′ 
� I n − I n � X ) k . 

The first equality has been known for a long time, at least since Karplus and Schwinger (1948) ; see also Snider (1964) ,

Wilcox (1967) , and Bellman ( 1970 , p. 175). The third equality provides a link with the corresponding formula for Lie algebras;

see Tuynman (1995) and Hall ( 2015 , Theorem 5.4), among others. 

4. Main result 

Propositions 1 –3 in the previous section summarize what is known about the first derivative of the exponential function. 

The propositions provide expressions for the Jacobian of F (X ) = e X , but their computation involves integrals or infinite sums.

We now present a new result where the Jacobian is expressed in a more transparent form which is easy to compute and

does not involve infinite sums or integrals. This is our main result. 

Theorem 1. Let X = T JT −1 be expressed in Jordan form. The Jacobian of the exponential function F (X ) = exp (X ) is 

∇(X ) = 

∂ vec F 

∂( vec X ) ′ = S�S −1 , 

where 

S = (T ′ ) −1 
� T , � = diag (�11 , �12 , . . . , �mm 

) , 

and 

�u v = 

n u −1 ∑ 

t=0 

n v −1 ∑ 

s =0 

θu v 
ts (E ′ n u ) 

t 
� E s n v 

. 

Letting w u v = λu − λv , the coefficients θu v 
ts take the form 

θu v 
ts = 

{
e λv 

(s + t+1)! 
(w u v = 0) , 

e λv 

(s + t+1)! 

∑ t 
i =0 αi (s, t) R s + i +1 (w u v ) (w u v 
 = 0) , 

where 

αi (s, t) = (−1) i 
(

s + i 

i 

)(
s + t + 1 

t − i 

)
, R n +1 (w ) = 

e w − ∑ n 
j=0 w 

j / j! 

w 

n +1 / (n + 1)! 
. 

In general, there are m Jordan blocks J 1 , . . . , J m 

, and we have to consider each pair (J u , J v ) . To illustrate the theorem, let

us consider the case where both J u and J v have dimension 2 ( n u = n v = 2 ). Assuming that w = λu − λv 
 = 0 , we have 

�u v = 

⎛ ⎜ ⎝ 

θ00 θ01 0 0 

0 θ00 0 0 

θ10 θ11 θ00 θ01 

0 θ10 0 θ00 

⎞ ⎟ ⎠ 

with 

θ00 = e λv R 1 ( w ) , θ01 = e λv R 2 ( w ) / 2 , 
λ λ
θ10 = e v ( 2 R 1 ( w ) − R 2 ( w ) ) / 2 , θ11 = e v ( 3 R 2 ( w ) − 2 R 3 ( w ) ) / 6 . 

4 
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5. Discussion on the main result 

Since Theorem 1 is our main result, we provide some further insights in the following six remarks. 

Remark 1. The αi are the coefficients of a (Gauss) hypergeometric function and satisfy 

t ∑ 

i =0 

αi = 1 , 

which is proved in Lemma 3 in the Appendix. 

Remark 2. When w approaches zero, then R n +1 approaches one, which can be seen by writing R n +1 as 

R n +1 (w ) = 1 + 

w 

(n + 2) 
+ 

w 

2 

(n + 2)(n + 3) 
+ · · · . 

So the derivative is continuous at w = 0 . This representation also shows that R n +1 (w ) = M(1 , n + 2 , w ) where M denotes

Kummer’s confluent hypergeometric function, and relates R n +1 to the incomplete gamma function (see also Lemma 1 in the 

Appendix). 

Remark 3. We can compute R n +1 either from its definition, or from the power series under Remark 2 when w is close to

zero, or from the recursion 

R n +1 = 

(n + 1)(R n − 1) 

w 

, R 1 = 

e w − 1 

w 

. 

Remark 4. In the definition of S = (T ′ ) −1 
� T , we require the ordinary transpose and not the complex conjugate. The rule

vec ABC = (C ′ � A ) vec B also holds for complex matrices and should not be replaced by vec ABC = (C ∗ � A ) vec B . This is be-

cause the rule reflects a rearrangement of the elements rather than a matrix product. 

Remark 5. When employing the Jordan decomposition, the question of numerical stability arises. This question is reviewed 

in detail by Moler and Van Loan (1978, 2003) who also provide further references. 

Remark 6. Some concepts in matrix algebra (rank, dimension of a Jordan block) are integer-valued and therefore discontinu- 

ous. Since Theorem 1 involves the Jordan decomposition, one may wonder whether the decomposition affects the continuity 

and differentiability of the exponential function, and whether the Jacobian is continuous at singularities where the compo- 

sition of Jordan blocks changes. A simple example suffices to justify our procedure. Let A ε be a 2 × 2 matrix, which can be

diagonalized when ε 
 = 0 but not when ε = 0 . Specifically we have, for ε 
 = 0 , 

A ε = 

(
ε 0 

1 0 

)
= T ε J εT −1 

ε = 

(
0 ε
1 1 

)(
0 0 

0 ε

)(
−1 /ε 1 

1 /ε 0 

)
, 

whose exponential is given by 

e A ε = T εe J ε T −1 
ε = 

(
0 ε
1 1 

)(
1 0 

0 e ε

)(
−1 /ε 1 

1 /ε 0 

)
= 

(
e ε 0 

(e ε − 1) /ε 1 

)
. 

For ε = 0 the matrix A 0 cannot be diagonalized and its Jordan decomposition is 

A 0 = 

(
0 0 

1 0 

)
= T 0 J 0 T 

−1 
0 = 

(
0 1 

1 0 

)(
0 1 

0 0 

)(
0 1 

1 0 

)
with exponential 

e A 0 = T 0 e 
J 0 T −1 

0 = 

(
0 1 

1 0 

)(
1 1 

0 1 

)(
0 1 

1 0 

)
= 

(
1 0 

1 1 

)
. 

We see that T ε does not converge to T 0 , that J ε does not converge to J 0 , and that e J ε does not converge to e J 0 . However, e A ε

does converge to e A 0 , and d exp (A ε ) does converge to d exp (A 0 ) , which can be verified using Theorem 1 . 

To see what happens, define 

S ε = (T ′ ε ) −1 
� T ε , S −1 

ε = T ′ ε � T −1 
ε , 

so that 

S ε
(
e J 

′ 
ε (1 −s ) 

� e J ε s 
)
S −1 
ε = e A 

′ 
ε (1 −s ) 

� e A ε s . (9) 

Although S ε and S −1 
ε have a singularity at ε = 0 , the left-hand side of (9) is regular near ε = 0 because the right-hand side

is regular. If we integrate it from 0 to 1 we obtain d exp (A ε ) ( Proposition 3 ), which is therefore also regular near ε = 0 . Then

taking the limit for ε → 0 and interchanging limit and integral we see that d exp (A ε ) converges to d exp (A 0 ) . 

The function exp is infinitely many times differentiable because each element is a power series in n 2 variables. The 

matrices T ε , J ε , e J ε , and S ε have a singularity at ε = 0 , but the singularity in the left-hand side of (9) is removable, so that
there are no discontinuities in the Jacobian and Theorem 1 is valid in the neighborhood of singularities. 

5 
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6. Defective and nondefective matrices 

An n × n matrix is defective if and only if it does not have n linearly independent eigenvectors, and is therefore not

diagonalizable. A defective matrix always has fewer than n distinct eigenvalues. A real n × n matrix is normal if and only if

X ′ X = X X ′ . A normal matrix is necessarily nondefective because it is diagonalizable. But a non-normal matrix can be either

defective or nondefective, as can be seen from the matrices 

A = 

(
1 1 

0 1 

)
, B = 

(
1 1 

0 2 

)
. 

Neither A nor B is normal, but A is defective while B is not. 

For nondefective (and in particular normal) matrices we obtain the following important special case of Theorem 1 . 

Theorem 2. Let X be a nondefective n × n matrix, so that there exists a nonsingular matrix T such that T −1 XT = 	, where

	 = diag (λ1 , . . . , λn ) . Then the Jacobian of the exponential function F (X ) = exp (X ) is 

∇(X ) = 

∂ vec F 

∂( vec X ) ′ = S�S −1 , 

where 

S = (T ′ ) −1 
� T , � = diag (δ11 , δ12 , . . . , δnn ) , 

and 

δi j = 

{
e λi (λi = λ j ) , 
e λi −e 

λ j 

λi −λ j 
(λi 
 = λ j ) . 

Proof. In the special case of nondefective X, all Jordan block are of dimension one. The only relevant coefficient is then θ00 

which takes the form θ00 = δi j , since α0 (0 , 0) = 1 , R 1 (w ) = (e w − 1) /w, and w = λi − λ j . �

The special case of symmetry was solved by Linton (1995) and McCrorie (1995) , but the extension to general nondefective

matrices does not seem to have been recorded. 

Theorem 2 provides the derivative of exp (X ) when X is nondefective at the point X 0 where the derivative is taken, but

possibly defective in a neighborhood of X 0 so that perturbations are unrestricted. But when X is structurally nondefective, 

that is nondefective at X 0 and in a neighborhood of X 0 , then we have to take this constraint into account. The next section

deals with this case. 

7. Restrictions on X

When X = X(t) where t is a vector of fewer than n 2 parameters, then X is structurally restricted, and this restriction has

to be taken into account. Since 

d vec X = 

∂ vec X (t) 

∂t ′ dt, 

the chain rule gives 

∂ vec exp (X ) 

∂t ′ = ∇(X ) 
∂ vec X (t) 

∂t ′ , ∇(X ) = 

∂ vec exp (X ) 

∂( vec X ) ′ . 

Let us consider two restrictions that are of particular importance: symmetry and skew-symmetry. Both restrictions are linear 

so that the matrix ∂ vec X(t ) /∂t ′ does not depend on t . 

When X is structurally symmetric, that is, when X ′ = X at X 0 and in a neighborhood of X 0 , then we need to employ the

duplication matrix D n and the vech () operator with the property that 

D n vech (X ) = vec X 

for every symmetric X; see Magnus ( 1988 , Chapter 4). The derivative of exp (X ) is then given by 

∂ vec exp (X ) 

∂( vech (X )) ′ = ∇(X ) D n , (10) 

where ∇(X ) can be obtained from the simpler expression in Theorem 2 rather than from Theorem 1 . 

Similarly, when X is structurally skew-symmetric, that is, when X ′ = −X at X 0 and in a neighborhood of X 0 , then we

need to employ the matrix ˜ D n and the ˜ v () operator with the property that ˜ D n ̃  v (X ) = vec X 

for every skew-symmetric X; see Magnus ( 1988 , Chapter 6). The derivative is now 

∂ vec exp (X ) 

∂( ̃ v (X )) ′ = ∇(X ) ̃  D n , (11) 
6 
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where again ∇(X ) is obtained from Theorem 2 . 

Symmetric and skew-symmetric matrices are both normal, that is, they satisfy the restriction X ′ X = X X ′ . This implies

that the perturbations are also restricted because 

(dX ) ′ X + X 

′ (dX ) − (dX ) X 

′ − X (dX ) ′ = 0 , 

so that 

(I n 2 + K n )(I n � X 

′ − X � I n ) d vec X = 0 , (12) 

where K n is the n 2 × n 2 commutation matrix such that K n vec A = vec A 

′ for any n × n matrix A ; see Magnus ( 1988 , Chap-

ter 3). This restriction applies to all structurally normal matrices. In the case of symmetry the derivative satisfies the restric-

tion because, for any symmetric X, 

(I n 2 + K n )(I n � X 

′ − X � I n ) D n = 0 . 

Similarly, in the case of skew-symmetry we have, for any skew-symmetric X, 

(I n 2 + K n )(I n � X 

′ − X � I n ) ̃  D n = 0 . 

8. Second differential 

Although less elegant, it is also possible to obtain higher-order derivatives of the exponential matrix function. For the 

case of a single parameter this was discussed in Mathias ( 1996 , Theorem 4), and for the symmetric case by Baba (2003) . Let

us consider the general case for the second-order derivative. 

Theorem 3. The Hessian of the st-th element of the exponential function F (X ) = exp (X ) is given by 

H st = 

∂ 2 F st 

(∂ vec X )(∂ vec X ) ′ = 

∞ ∑ 

k =0 

K n Q 

(s,t) 
k +2 

+ (Q 

(s,t) 
k +2 

) ′ K n 

(k + 2)! 
, 

where K n is the commutation matrix, 

Q 

(s,t) 
k +2 

= 

∑ 

h + i + j= k 
(X 

j E ts X 

h ) ′ � X 

i , 

and E ts denotes the n × n matrix with one in the ts -th position and zeros elsewhere. 

In the case of symmetry, skew-symmetry or another linear structure restriction, we need to adjust the Hessian matrix. 

For example, when X is structurally symmetric, the Hessian matrices with respect to vech (X ) become D 

′ 
n H st D n . 

9. Discretized Ornstein–Uhlenbeck process 

Consider a multivariate version of the Ornstein–Uhlenbeck stochastic process characterized by the following system of 

linear stochastic differential equations with constant coefficients: 

dy (t) = Ay (t) d t + �1 / 2 d W (t) , (13) 

where W (t) is a continuous-time Wiener process such that E dW (t) = 0 and E d W (t) d W 

′ (t) = I n dt, and the real part of

each eigenvalue of A is negative to guarantee stationarity of the process. 

When all the elements of y t are stock variables, Bergstrom (1984) showed that (13) generates discrete observations which, 

regardless of the discretization interval h ∈ R 

+ , follow the Var (1) model 

y t = e Ah y t−h + η(h ) 
t (t = h, 2 h, . . . ) , (14) 

where the Gaussian error term η(h ) 
t = 

∫ t 
t−h e 

A (t−s ) �1 / 2 dW (s ) satisfies 

E η(h ) 
t = 0 , E (η(h ) 

t )(η(h ) 
t ) ′ = 

∫ h 

0 

e As �e A 
′ s ds, 

and 

E (η(h ) 
t )(η(h ) 

t−r ) 
′ = 0 (r ≥ h ) . 

Let ζ denote the vector of underlying structural parameters that characterize the continuous-time model (13) through the 

matrices A (ζ ) and �(ζ ) . We can then exploit the discretized version (14) to estimate ζ from a sample of T discrete equidis-

tant observations on y t . To simplify the expressions we set h = 1 without loss of generality. Given that the conditional

distribution of the discrete-time innovations is Gaussian, we can efficiently estimate ζ by maximum likelihood under the 

maintained assumption of identifiability, which we revisit below. (If W (t) is not Gaussian, the estimation procedure should 
7 
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be understood as Gaussian pseudo-maximum likelihood.) To do so, it is convenient to obtain analytical expressions for the 

derivatives of the conditional mean and variance functions 

μt (ζ ) = e A (ζ ) y t−1 , �(ζ ) = 

∫ 1 

0 

e A (ζ ) s �(ζ ) e A (ζ ) ′ s ds 

with respect to ζ . 

Regarding μt , we have d μt = (d e A ) y t−1 , and hence 

∂μt 

∂ζ ′ = (y ′ t−1 � I n ) ∇(A ) 
∂ vec A 

∂ζ ′ , (15) 

where ∇(A ) denotes the derivative of vec e A with respect to vec A given in Theorem 1 . 

Regarding �, let F s = e A (ζ ) s �(ζ ) e A (ζ ) ′ s so that 

d F s = (d e As )�e A 
′ s + e As (d�) e A 

′ s + e As �(de A 
′ s ) 

and 

d vec F s = (e As � � I n ) d vec e As + (e As 
� e As ) d vec � + (I n � e As �) d vec e A 

′ s 

= (I n 2 + K n )(e As � � I n ) d vec e As + (e As 
� e As ) d vec �, 

where K n is the commutation matrix. Then, 

∂ vech (�) 

∂( vec A ) ′ = 2 D 

+ 
n 

(∫ 1 

0 

s (e As � � I n ) ∇(As ) ds 

)
(16) 

and 

∂ vech (�) 

∂( vech (�)) ′ = D 

+ 
n 

(∫ 1 

0 

(e As 
� e As ) ds 

)
D n , (17) 

where D n is the duplication matrix. The derivatives with respect to ζ then follow from the chain rule, 

∂ vech (�) 

∂ζ ′ = 

∂ vech (�) 

∂( vec A ) ′ 
∂ vec A 

∂ζ ′ + 

∂ vech (�) 

∂( vech (�)) ′ 
∂ vech (�) 

∂ζ ′ . 

Alternative expressions for the derivatives can be obtained by noting, as in Phillips (1973) , that 

� = 

∫ 1 

0 

e As �e A 
′ s ds ⇐⇒ e A �e A 

′ − � = A � + �A 

′ , (18) 

the so-called discrete-time Lyapunov equation. This gives 

(de A )�e A 
′ + e A (d�) e A 

′ + e A �(de A ) ′ − d�

= (dA )� + A (d�) + (d�) A 

′ + �(dA ) ′ , 

and upon vectorizing, 

( I n � A + A � I n ) d vec � = (e A � e A − I n � I n ) d vec �

+ (I n 2 + K n )(e A � � I n ) d vec e A − (I n 2 + K n )(� � I n ) d vec A. 

Taking the symmetry of � and � into account, we obtain 

D 

+ 
n ( I n � A + A � I n ) D n d vech (�) = D 

+ 
n (e A � e A − I n � I n ) D n d vech (�) 

+ 2 D 

+ 
n (e A � � I n ) d vec e A − 2 D 

+ 
n (� � I n ) d vec A. 

The matrix I n � A + A � I n is nonsingular if and only if A is nonsingular and its eigenvalues λi satisfy λi + λ j 
 = 0 for all i 
 = j

( Magnus, 1988 , Theorem 4.12). This is the case in model (13) because we have assumed that � (λi (A )) < 0 for all i . Then, 

∂ vech (�) 

∂( vec A ) ′ = 2 D 

+ 
n ( I n � A + A � I n ) 

−1 D n D 

+ 
n (e A � � I n ) ∇(A ) 

− 2 D 

+ 
n ( I n � A + A � I n ) 

−1 D n D 

+ 
n (� � I n ) (19) 

and 

∂ vech (�) 

∂( vech (�)) ′ = D 

+ 
n ( I n � A + A � I n ) 

−1 D n D 

+ 
n (e A � e A − I n � I n ) D n , (20) 

which does not involve any integral. 

Given that the mapping between � and � is bijective when � is unrestricted, we can estimate the model in terms of 

A and � without loss of efficiency, which considerably simplifies the calculations, especially if we take into account that 
8 
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� can be concentrated out of the log-likelihood function (see again Bergstrom, 1984 ). Given A and �, we can solve � by

writing (18) as 

D 

+ 
n (e A � e A − I n � I n ) D n vech (�) = D 

+ 
n (I n � A + A � I n ) D n vech (�) . 

This will guarantee that � is symmetric, but not that it is positive (semi)definite, unless A � + �A 

′ is positive (semi)definite;

see also Hansen and Sargent (1983) . 

An important advantage of the analytical expressions for the Jacobian of the exponential in Theorem 1 is that we do not

need to compute the exact discretization of the Ornstein–Uhlenbeck process. 

Without any restrictions on the matrices A and �, the so-called aliasing problem may prevent the global identification 

of ζ from the discretized continuous time process (14) ; see e.g. Phillips (1973) or Hansen and Sargent (1983) . Theorem 1 in

McCrorie (2003) states that the parameters A and � are identifiable from (14) if the eigenvalues of the matrix 

M = 

(
−A �
0 A 

′ 

)
are strictly real and no Jordan block of M belonging to any eigenvalue appears more than once. 

To illustrate this result, let us consider a bivariate example in which y 2 (t) does not Granger cause y 1 (t) at any dis-

crete horizon, and the instantaneous variance matrix of the shocks is unrestricted. Proposition 21 in Comte and Re- 

nault (1996) states that this will happen when A is upper triangular, intuitively because e Ah inherits the upper triangularity

from A . McCrorie’s conditions are now satisfied when a 11 
 = a 22 , in which case A is diagonalizable, but also when a 11 = a 22 ,

in which case it is defective. The strength of Theorem 1 is that it can be employed to compute the required derivatives in

either case. 

10. Rotation matrices and structural vector autoregressions 

Consider the n -variate structural vector autoregressive process 

y t = Ay t−1 + Cξt , 

where ξt | I t−1 ∼ i.i.d. (0 , I N ) and C is an unrestricted matrix of impact multipliers. Let εt = Cξt denote the reduced-form inno-

vations, so that εt | I t−1 ∼ i.i.d. (0 , �) with � = C C ′ . A Gaussian pseudo-loglikelihood function can identify � but not C, which

implies that the structural shocks ξt and their loadings in C are only identified up to an orthogonal transformation. Specif- 

ically, we can use the QR decomposition to relate the matrix C to the Cholesky decomposition of � = �
L 
�′ 

L 
as C ′ = Q 

′ �′ 
L 
,

where Q is an n × n orthogonal matrix, which we can model as a function of n (n − 1) / 2 free parameters ω by assuming

that | Q| = +1 ; see Rubio-Ramírez et al. (2010) . This assumption involves no loss of generality because if | Q| = −1 then we

can always change the sign of the i -th structural shock and its impact multipliers in the i -th column of C as long as we also

modify the shape parameters of the distribution of ξit to alter the sign of all its nonzero odd moments. 

In some cases, statistical identification of both the parameters in ω and the structural shocks in ξ (up to permutations 

and sign changes) is possible. This happens if we assume (i) cross-sectional independence of the n shocks, and (ii) a non-

Gaussian distribution for at least n − 1 of them; see Lanne et al. (2017) for a proof, and Brunnermeier et al. (2019) for a re-

cent example of the increased popularity of Svar models with non-Gaussian shocks. Thus, if we exploit the non-Gaussianity 

of the structural shocks, then we can estimate not only the parameters a = vec A and σL = vech (�L ) , but also ω. 

To obtain analytical expressions for the score and the conditional information matrix, we require the derivatives of the 

conditional mean μt and the conditional variance �t . In our model we have μt = Ay t−1 and � = C C ′ = �L Q Q 

′ �′ 
L 

(inde-

pendent of t), and this raises the question how we should model the orthogonal matrix Q, confining ourselves to rotation

matrices, that is, orthogonal matrices with determinant +1 . 

We propose to model orthogonality by using the following connection between orthogonal and skew-symmetric matrices. 

Since Q 

′ Q = I n we have (dQ ) ′ Q + Q 

′ dQ = 0 , and hence Q 

′ dQ is skew-symmetric. The Lie algebra of an orthogonal matrix

group thus consists of skew-symmetric matrices. Put differently, the matrix exponential of any skew-symmetric matrix is a 

rotation matrix because H + H 

′ = 0 implies that 

I n = e 0 = e H 
′ + H = (e H ) ′ (e H ) 

and | e H | = +1 . For Q = e H we thus obtain 

d Q = d e H = 

∂ vec e H 

∂( vec H) ′ d vec H = ∇(H) ̃  D n d ̃ v (H) , 

and hence 

∂ vec Q 

∂( ̃ v (H)) ′ = ∇(H) ̃  D n , (21) 

where ∇(H) is given in Theorem 2 in closed form. 

There are other ways to model orthogonality, and we shall discuss two of these below because they are often used, even

though both are problematic. First, following Gouriéroux et al. (2017) , we could employ the Cayley transform 

Q = (I n − H)(I n + H) −1 , H = (I n − Q )(I n + Q ) −1 , (22) 
9 
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where H is skew-symmetric ( Bellman, 1970 , p. 92). This gives 

dQ = −(dH)(I n + H) −1 − (I n − H)(I n + H) −1 (dH)(I n + H) −1 

= −1 

2 

(I n + Q )(dH)(I n + Q ) , 

and hence 

∂ vec Q 

∂( ̃ v (H)) ′ = −1 

2 

(
(I n + Q 

′ ) � (I n + Q ) 
)˜ D n . (23) 

The problem with the Cayley transform (22) is that H defined in terms of Q only exists if Q has no eigenvalue equal to −1

because, if it does, then the matrix I n + Q in (22) is singular. For example, the matrix Q = −I 2 has determinant +1 and both

eigenvalues are −1 . Letting 

H = 

(
0 ω 

−ω 0 

)
we have 

(I n − H)(I n + H) −1 = 

1 

1 + ω 

2 

(
1 − ω 

2 −2 ω 

2 ω 1 − ω 

2 

)
, 

and this only approaches −I 2 when ω → ±∞ . 

A second alternative to model orthogonality, also problematic, is based on the parameterization of rotation matrices in 

terms of angles. For n = 2 there is only one free parameter and any rotation matrix takes the form 

A = 

(
cos α − sin α
sin α cos α

)
. 

For n = 3 , there are three free parameters and any rotation matrix is a product of the Givens matrices 

A 1 = 

( 

1 0 0 

0 cos α − sin α
0 sin α cos α

) 

, A 2 = 

( 

cos β 0 − sin β
0 1 0 

sin β 0 cos β

) 

, 

and 

A 3 = 

( 

cos γ − sin γ 0 

sin γ cos γ 0 

0 0 1 

) 

;

see Golub and Van Loan ( 2013 , Section 5.1.8). For an application of this approach to multivariate Garch models; see

van der Weide (2002) . 

The order in which we multiply the matrices matters, so A 3 A 2 A 1 is just one of six possible rotation matrices that can be

constructed from these matrices. The derivative of the resulting orthogonal matrix with respect to the so-called Tait–Bryan 

angles α, β, and γ can now be easily constructed. 

There are, however, two problems with modelling rotation matrices in this way. The first problem is what navigators call 

a ‘gimbal lock’. For example, when β = π/ 2 we can only identify α + γ from A = A 3 A 2 A 1 , but neither parameter separately.

The second problem is that parameterizing rotation matrices in terms of the angles of n (n − 1) / 2 Givens matrices becomes

rather cumbersome when n increases. 

11. The economic impact of macro and financial uncertainty 

In the previous section we presented the Svar model with independent shocks. We now illustrate this theory by revis- 

iting the empirical analysis in Carriero et al. (2018) , Ludvigson et al. (2018) , and Angelini et al. (2019) . The data consist of

monthly observations from August 1960 to April 2015 on a macro uncertainty index taken from Jurado et al. (2015) , the rate

of growth of the industrial production index, and a financial uncertainty index constructed by Ludvigson et al. (2018) . 1 

As all these authors convincingly argue, a joint model of financial and macroeconomic uncertainty is crucial to under- 

stand the relationship between uncertainty and the business cycle. We adopt the original Var (4) specification with drift 

in Angelini et al. (2019) , which implies that T = 653 after initialization of the loglikelihood with four pre-sample observa-

tions. 

Fiorentini and Sentana (2021) jointly estimated all the model parameters under the assumption that the structural shocks 

follow three independent univariate Student- t distributions, and they found clear evidence of distributional misspecification. 

In the current paper we therefore use the two-step procedure in Gouriéroux et al. (2017) , which remains consistent under
1 The data can be downloaded from the Journal of Applied Econometrics data archive at http://qed.econ.queensu.ca/jae/2019- v34.3/angelini- et- al . 
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distributional misspecification. In the first step we estimate by Gaussian pseudo maximum likelihood the n + pn 2 + n (n +
1) / 2 reduced-form parameters 

ϑ = (τ ′ , vec ′ (A 1 ) , . . . , vec ′ (A p ) , vech 

′ 
(�L )) 

′ , 

where n = 3 , p = 4 , τ denotes the drift, A j the regression coefficients of the jth lag, and �L the Cholesky factor of the

residual variance matrix. In the second step we compute the standardized reduced-form residuals, on the basis of which 

we estimate by non-Gaussian pseudo maximum likelihood the n (n − 1) / 2 free elements ω of the orthogonal rotation matrix

Q(ω) , which relates the structural shocks ξt (ϑ, ω) to the reduced-form residuals εt (ϑ) through 

ξt (ϑ, ω) = Q 

′ (ω)�−1 
L εt (ϑ) = Q 

′ (ω)�−1 
L (y t − τ − A 1 y t−1 − · · · − A p y t−p ) . 

We ensure the non-Gaussianity of the shocks by assuming that each of them follows a standardized version of the Laplace

(or double exponential) distribution, which is a member of the family of Generalized Error distributions. As a result, the 

second-step criterion function is the log-likelihood function ∑ T 

t=1 
l(y t ; ˜ ϑ , ω) = −T log | ̃  �L | + 

∑ T 

t=1 

∑ N 

i =1 
l[ ξit ( ̃  ϑ , ω)] , 

where 

l[ ξit ( ̃  ϑ , ω)] = − log 2 −
√ 

2 | ξit ( ̃  ϑ , ω) | . 
Note that we need not include Q(ω) in the Jacobian term because the determinant of any rotation matrix is +1 . 

To save space we shall not report the first-step estimates of the 45 conditional mean parameters of the Structural Var

(which in this case amounts to equation-by-equation OLS), as they coincide with those in Angelini et al. (2019) . The Cholesky

decomposition of the OLS residual variance matrix (with denominator T ), which is also estimated in the first step, is given

by 

�L = 

( 

0 . 0102 0 0 

−0 . 1102 0 . 6487 0 

0 . 0068 0 . 0022 0 . 0262 

) 

. 

In turn, the second-step maximum likelihood estimate of the skew-symmetric matrix defined in the previous section is 

H = 

( 

0 −0 . 1558 0 . 1194 

0 . 1558 0 0 . 1163 

−0 . 1194 −0 . 1163 0 

) 

, 

which contains only the three free elements in ω = ̃

 v (H) . We use the matrix H to parameterize the rotation matrix 

Q = exp (H) = 

( 

0 . 9808 −0 . 1613 0 . 1094 

0 . 1475 0 . 9812 0 . 1245 

−0 . 1274 −0 . 1060 0 . 9862 

) 

, 

as described in the previous section. Given that H is skew-symmetric and therefore normal, the Jacobian of Q adopts the 

simpler form in (21) , whose reliance on Theorem 2 is particularly convenient from the numerical point of view. 

Finally, we estimate the matrix of impact multipliers 

C = �L Q = 

( 

0 . 0100 −0 . 0017 0 . 0011 

−0 . 0124 0 . 6543 0 . 0687 

0 . 0036 −0 . 0017 0 . 0269 

) 

by postmultiplying the Cholesky factor �L obtained in the first step by the orthogonal matrix Q estimated in the second 

step. As can be seen, the C matrix differs markedly from the underlying Cholesky factor, which highlights the risks of relying

on off-the-shelf identification schemes. 

12. Conclusions 

The purpose of this paper was to present a closed-form expression for the Jacobian of the exponential function, applicable 

for both diagonalizable and defective matrices, and to discuss some applications. It may be possible to obtain a similarly 

attractive result for the Hessian (instead of Theorem 3 ), but this is perhaps a topic for future research. 

We mention two further issues. First, if Y = exp (X ) , then X = log (Y ) is the logarithm of Y . Differentiating both sides of

X = log ( exp (X )) , we find 

∂ vec log (Y ) 

∂( vec Y ) ′ 
∂ vec exp (X ) 

∂( vec X ) ′ = I n 2 , 

and hence the Jacobian of the logarithm is the inverse of the Jacobian of the exponential. Some care is, however, re-

quired because not all matrices have a logarithm and those matrices that do have a logarithm may have more than one
11 
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( Bellman, 1970 , Section 11.20). A necessary condition for a matrix Y to have a logarithm is that Y is nonsingular. For com-

plex matrices, this condition is also sufficient, but a real matrix Y has a real logarithm if and only if it is nonsingular and

each Jordan block belonging to a negative eigenvalue occurs an even number of times. 

Second, we have assumed that the matrix X is real, although its eigenvalues and eigenvectors will in general be complex. 

Our results are, however, also valid for complex matrices. In particular Proposition 3 and Theorem 1 remain valid without

modification. The derivative now becomes the complex derivative with respect to the complex matrix Z, and exp (Z) and 

d exp (Z) are analytic in n 2 complex variables. 
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Appendix. Proofs 

Proof of Propositions 1 and 2 : See text. 

Proof of Proposition 3 : Setting t = 1 in (8) gives 

e X+ dX − e X = 

∫ 1 

0 

e X(1 −s ) (d X ) e (X + dX ) s d s, 

so that 

d e X = e X 
∫ 1 

0 

e −Xs (d X ) e Xs d s, 

using the fact that 

(dX ) e (X + dX ) s = ( dX ) e Xs + O ( ( dX ) 2 ) . 

This gives the first expression. The second expression follows from the fact that the matrices A = X ′ � I n and B = I n � X

commute, so that 

e (X ′ �I n −I n �X ) s = e (A −B ) s = e As e −Bs 

= 

(
(e Xs ) ′ � I n 

)(
I n � e −Xs 

)
= (e Xs ) ′ � e −Xs . 

To prove the third expression we note that ∫ 1 

0 

e (A −B ) s ds = 

∞ ∑ 

k =0 

(A − B ) k 

k ! 

∫ 1 

0 

s k ds = 

∞ ∑ 

k =0 

(A − B ) k 

(k + 1)! 
. 

The proof of Theorem 1 rests on the following three lemmas. 

Lemma 1. For any integer p ≥ 0 and any w (real or complex), we have 

w 

p+1 

∫ 1 

0 

r p e −wr dr = p! 

( 

1 − e −w 

p ∑ 

j=0 

w 

j 

j! 

) 

. 

Proof. Let a p (w ) = 

∫ 1 
0 r p e −wr dr. Partial integration gives the recursion 

wa p (w ) = pa p−1 (w ) − e −w , a 0 (w ) = (1 − e −w ) /w, 

and the result follows by induction. Note the close relationship with the (lower) incomplete gamma function 

γ (p, w ) = 

∫ w 

0 

t p−1 e −t dt (� (p) > 0) , 

where p and w may be complex and the real part of p is positive. In the special case where p is a positive integer this can

also be written as 

γ (p, w ) = (p − 1)! 

( 

1 − e −w 

p−1 ∑ 

j=0 

w 

j 

j! 

) 

(p ≥ 1) ;

see DLMF ( 2020 , Eq. (8.4.7)). �
12 



J.R. Magnus, H.G.J. Pijls and E. Sentana Journal of Economic Dynamics & Control 127 (2021) 104122 

 

Lemma 2. Let x follow a beta distribution 

f (x ; p, q ) = 

1 

B (p, q ) 
x p−1 (1 − x ) q −1 

where p ≥ 1 and q ≥ 1 are integers and 0 ≤ x ≤ 1 . Then, for any w (real or complex), 

E (e −wx ) = e −w 

q −1 ∑ 

i =0 

αi (p − 1 , q − 1) R p+ i (w ) , 

where αi (s, t) and R n +1 (w ) are defined in Theorem 1 . 

Proof. Using Lemma 1 we obtain ∫ 1 

0 

e −wx x p−1 (1 − x ) q −1 dx = 

q −1 ∑ 

i =0 

(−1) i 
(

q − 1 

i 

)∫ 1 

0 

e −wx x p+ i −1 dx 

= 

q −1 ∑ 

i =0 

(−1) i 
(

q − 1 

i 

)
w 

−(p+ i ) ( p + i − 1)! 

( 

1 − e −w 

p+ i −1 ∑ 

j=0 

w 

j 

j! 

) 

= e −w 

q −1 ∑ 

i =0 

(−1) i 
(

q − 1 

i 

)
R p+ i ( w ) 

p + i 

= B (p, q ) e −w 

q −1 ∑ 

i =0 

αi (p − 1 , q − 1) R p+ i (w ) . �

Here we note that the moment-generating and characteristic functions of the beta distribution with integer-valued parame- 

ters follow as special cases by setting w = −t and w = −it, respectively. 

Lemma 3. Let αi (s, t) be as defined in Theorem 1 . Then 
∑ t 

i =0 αi (s, t) = 1 . 

Proof. The result follows from the Chu–Vandermonde identity ( Askey, 1975 , p. 60), but can also be proved by observing

that ∫ 1 

0 

r s (1 − r) t dr = 

s ! t! 

(s + t + 1)! 

from the definition of the beta distribution, and also ∫ 1 

0 

r s (1 − r) t d r = 

t ∑ 

i =0 

(−1) i 
(

t 

i 

)∫ 1 

0 

r s + i d r = 

t ∑ 

i =0 

(−1) i 

s + i + 1 

(
t 

i 

)
. 

Hence, 

1 = 

t ∑ 

i =0 

(−1) i 

s + i + 1 

(s + t + 1)! 

s ! t! 

(
t 

i 

)
= 

t ∑ 

i =0 

(−1) i 
(

s + i 

i 

)(
s + t + 1 

t − i 

)
. �

Based on the three lemmas we now prove Theorem 1 . 

Proof of Theorem 1 : Our starting point is 

∇(X ) = 

∂ vec F 

∂( vec X ) ′ = 

∫ 1 

0 

e X 
′ r 

� e X(1 −r) dr = 

∫ 1 

0 

e X 
′ (1 −r) 

� e Xr dr, 

as given in Proposition 3 . Let 

T −1 X T = J = diag (J 1 , . . . , J m 

) , J i = λi I n i + E n i 

be the Jordan decomposition. Then, as in the derivation of (3) , 

e J v r = e λv r 
n v −1 ∑ 

s =0 

r s 

s ! 
E s n v 

and 

e J 
′ 
u (1 −r) = e λu (1 −r) 

n u −1 ∑ 

t=0 

(1 − r) t 

t! 
(E ′ n u ) 

t , 

so that 

e J 
′ 
u (1 −r) 

� e J v r = 

n u −1 ∑ 

t=0 

n v −1 ∑ 

s =0 

e λu (1 −r) (1 − r) t 

t! 

e λv r r s 

s ! 
(E ′ n u ) 

t 
� (E n v ) 

s . 
13 
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Hence, the Jacobian is ∇(X ) = S�S −1 , where 

S = (T ′ ) −1 
� T , � = diag (�11 , �12 , . . . , �mm 

) , 

and 

�u v = 

n u −1 ∑ 

t=0 

n v −1 ∑ 

s =0 

θu v 
ts (E ′ n u ) 

t 
� (E n v ) 

s 

with 

θu v 
ts = 

∫ 1 

0 

e λu (1 −r) (1 − r) t 

t! 

e λv r r s 

s ! 
dr. 

To complete the proof we need to show that this expression for θu v 
ts equals the expression for θu v 

ts in Theorem 1 . Let w =
λu − λv . Then, by Lemma 2 , 

e −λv θu v 
ts = 

e w 

s ! t! 

∫ 1 

0 

e −wr r s (1 − r) t dr = 

1 

(s + t + 1)! 

t ∑ 

i =0 

αi (s, t) R s + i +1 (w ) . �

This completes the proof. 

Proof of Theorem 2 : See text. 

Proof of Theorem 3 : We have 

d 2 X 

2 = 2(dX )(dX ) , 

d 2 X 

3 = 2 ( (dX )(dX ) X + (dX ) X (dX ) + X (dX )(dX ) ) , 

and, in general, 

d 2 X 

k +2 = 2 

∑ 

h + i + j= k 
X 

h (dX ) X 

i (dX ) X 

j . 

Let e s and e t be elementary n × 1 vectors, that is, e s has one in its s -th position and zeros elsewhere, and e t has one in its

t-th position and zeros elsewhere. Then E st = e s e 
′ 
t . Now consider the st-th element of d 2 X k +2 : (

d 2 X 

k +2 
)

st 
= 2 

∑ 

h + i + j= k 
e ′ s X 

h (dX ) X 

i (dX ) X 

j e t 

= 2 

∑ 

h + i + j= k 
tr X 

j E ts X 

h (dX ) X 

i (dX ) 

= 2 (d vec X ) ′ K n Q 

(s,t) 
k +2 

d vec X, 

where we have used the fact that 

tr A (dX ) B (dX ) = (d vec X ) ′ K n (A 

′ 
� B ) d vec X. 

Hence, the second differential of the st-th element of F (X ) = exp (X ) is given by 

d 2 F st = 

∞ ∑ 

k =0 

2 

(k + 2)! 
(d vec X ) ′ K n Q 

(s,t) 
k +2 

d vec X, 

and the Hessian follows from the second identification theorem ( Magnus and Neudecker, 2019 , Theorem 6.6). �
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