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1 Introduction

The papers by Oster (2017) (henceforth Oster) and Pei, Pischke and Schwandt (2018) (henceforth

PPS) contribute to the development of methods of inference about causal effects in the challeng-

ing and empirically relevant situation where the unknown data-generation process (DGP) is not

included in the set of regression models considered by the investigator.

Building on Altonji, Elder and Table (2005), Oster analyzes the link between omitted variable

bias in estimating a causal effect of interest and coefficient stability, defined as the change in the

OLS estimates of the causal effect when imperfect controls are added to an initial model. PPS

instead analyze the power properties of two alternative strategies for testing the consistency of

the OLS estimator of the causal effect when the controls in the intermediate model are subject

to measurement error. The two papers are in fact closely related, as they involve comparing the

bias or the sampling variance of OLS estimators from misspecified models with different sets of

regressors. The general misspecification framework recently proposed by De Luca, Magnus and

Peracchi (2018) (henceforth DMP) is therefore particularly suited to analyze and understand the

restrictions imposed by the two papers.
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Franco Peracchi acknowledge financial support from MIUR PRIN 2015FMRE5X.
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Our comments are organized as follows. Section 2 presents the general misspecification frame-

work developed in DMP. Section 3 discusses some results on inconsistencies and regression R2 that

are important for Oster’s paper. Section 4 draws some implications of these results for empirical

strategies. Section 5 discusses some results on testing strategies that are important for PPS’s paper.

Finally, Section 6 offers some conclusions. Proofs are collected in the Appendix.

2 A general misspecification framework

Oster and PPS focus on the case in which there is a single regressor of interest, so we consider the

following simplified version of the DGP proposed in DMP:

y = β1x1 + β′2X2 + ξ + ǫ, (1)

where x1 is an observable scalar treatment, X2 is a set of k2 observable controls, β1 and β2 are

unknown parameters, ξ is an unobservable specification error capturing, for example, the contribu-

tions of omitted variables or measurement errors, and ǫ is an unobservable regression error satisfying

E(ǫ|x1,X2, ξ) = 0. We assume, without loss of generality, that all variables are centered to have

mean zero. We also assume that (x1,X2, ξ) have positive definite second moment matrix

Σ =





σ21 σ′21 σ1ξ
σ21 Σ22 σ2ξ
σ1ξ σ′2ξ σ2ξ



 .

When k2 = 1, we write x2 instead of X2 and σ22 instead of Σ22. The parameter of interest is the

scalar β1 which, under our assumptions, is interpreted as the causal effect of x1 on y. If ξ were

observable, then β1 could be estimated unbiasedly by an OLS regression of y on x1, X2 and ξ. The

key statistical problem is that ξ is not observable.

Given a random sample from (1), we consider two alternative estimators of β1: the restricted

OLS estimator β̂1r from the short regression of y on x1, with probability limit denoted by β1r,

and the unrestricted OLS estimator β̂1u from the intermediate regression of y on x1 and X2, with

probability limit denoted by β1u. From DMP, the inconsistencies of these two estimators are

b1r = β1r − β1 = τ1 + ψ′(β2 + τ2), b1u = β1u − β1 = τ1, (2)

where ψ = σ21/σ
2
1 contains the population coefficients in the linear projection of X2 on x1 (or

“balancing regression,” using the terminology of PPS), τ1 = σ11σ1ξ −ψ′Σ22σ2ξ and τ2 = Σ22(σ2ξ −

σ1ξψ) are the population coefficients in the linear projection of ξ on x1 andX2, σ
11 = 1/σ21+ψ

′Σ22ψ,
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and Σ22 = (Σ22 − σ21σ
′

21/σ
2
1)

−1. Notice that while the inconsistency of the unrestricted OLS

estimator of β1 from the intermediate regression is equal to τ1, the inconsistency of the unrestricted

OLS estimator of β2 from the same regression is equal to τ2. The expression for b1r in (2) generalizes

the classical omitted variables bias formula to settings where the intermediate regression is smaller

than the unknown DGP. Since the DGP (1) encompasses a variety of misspecification problems,

the expressions for b1r and b1u are completely general and can easily be extended to the case when

x1 contains more than one regressor. An immediate implication of (2) is that b1r − b1u = β1r −

β1u = ψ′(β2 + τ2), which shows that the strategy of evaluating coefficient stability by augmenting

the short regression with an additional set of regressors is only informative about the sign and

magnitude of the difference of the inconsistencies, not about the sign and magnitude of the two

inconsistencies separately. In fact, depending on the conditions discussed in DMP, the difference

b1r − b1u can be large or small, positive or negative. Thus, the two estimators may differ by little

even when their inconsistencies are large. Furthermore, lack of coefficient stability may arise when

the inconsistencies of the two estimators have opposite signs and |b1u| > |b1r|.

Sharper results may be obtained if stronger assumptions are imposed but, according to the Law

of Decreasing Credibility (Manski 2003), the credibility of inference decreases with the strength

of the assumptions maintained. Thus, in the next three sections, we focus on the additional

assumptions employed by Oster and PPS to obtain their results.

3 Inconsistencies and regression R-squares

Oster writes her model as Y = βX +Ψ′ωo+W2+ ǫ, where X is an observable scalar treatment, ωo

is a set of observable controls, β and Ψ are unknown parameters, and W2 and ǫ are unobservable

random terms. This is the same as model (1) with y = Y , β1x1 = βX, β′2X2 = Ψ′ωo and ξ = W2.

It is useful to define the linear combination η = β′2X2 of the available controls, the vector µ

of coefficients in the linear projection of x1 on X2, and the additional set of population second

moments σ2η = var(η) = β′2Σ22β2, σ1η = cov(x1, η) = σ′21β2 and σηξ = cov(η, ξ) = β′2σ2ξ. As in

Oster, we describe the link between x1, ξ and η through the “proportional selection relationship”

σ1ξ
σ2ξ

= ϕ
σ1η
σ2η

, (3)

for some value of the proportionality coefficient ϕ.

Oster’s contribution is to provide various characterizations of the inconsistency b1u = β1u−β1 of

the unrestricted OLS estimator of β1. Although these characterizations do not come for free, they
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have attracted considerable interest because of their simplicity and their possible use for sensitivity

analysis or for deriving bias-corrected estimators of β1. Her first main result (Proposition 1) is an

explicit representation of b1u based on the following set of assumptions:

Assumption A The covariance σ1η between x1 and η is nonzero.

Assumption B The controls in X2 are uncorrelated with the specification error ξ.

Assumption C The controls in X2 are mutually uncorrelated.

Assumption D (Equal selection relationship) The relationship (3) holds with ϕ = 1.

Assumption E The elements of β2 = (β21, . . . , β2k2)
′ are proportional to the elements of µ =

(µ1, . . . , µk2)
′.

Assumption A is fundamental but never formally stated in Oster’s paper. Assumption C helps

simplify the proofs but, as shown below, is unnecessary. Assumption D is the same as Oster’s

Assumption 1. Assumption E corresponds to Oster’s Assumption 2 but our formulation is slightly

different to guarantee that the assumption also holds when there is only one control. This is a

strong assumption and Oster points out that “with multiple controls it is very unlikely to hold

except in pathological cases” (p. 6). As for Assumption B, Oster admits that it is controversial

because “somewhat at odds with the intuition that the observables and the unobservables are

related” (p. 6). In fact, when imposed jointly with Assumptions A and D, it implies that (i) b1r

and b1u are proportional to each other, (ii) σ1η, b1r and b1u have the same sign, and (iii) σ1η and

β1r − β1u = b1r − b1u have the same sign. The first two results follow from (2) after imposing the

restrictions σ2ξ = 0 and σ1ξ = σ2ξσ1η/σ
2
η , while the third follows from our Corollary 1 below.

Under Assumptions A–E, Oster’s Proposition 1 shows that

b1u = (β1r − β1u)
R2

max −R2
u

R2
u −R2

r

, (4)

where R2
max is the unknown population R2 from the DGP (1), while R2

r and R2
u are the population

R2 from, respectively, the short regression of y on x1 and the intermediate regression of y on x1 and

X2. An important implication of (4) is that (β1u−β1)/(β1r −β1u) = (R2
max −R

2
u)/(R

2
u−R

2
r), that

is, “the ratio of the movement in coefficients is equal to the ratio of the movement in R-squared”

(Oster, p. 7). Since β̂1r − β̂1u is consistent for β1r − β1u, another implication of (4) for the special

case when R2
max is known, is the following bias-corrected estimator of β1

β̃1 = β̂1u − (β̂1r − β̂1u)
R2

max −R2
u

R2
u −R2

r

.

4



This second result may help explain the appeal of Proposition 1 among practitioners despite the

warning that “[g]iven the restrictiveness of the assumptions [. . . ] it is not appropriate to suggest

that researchers use this as an estimator directly” (Oster, p. 7).

To appreciate why Assumptions A–E are restrictive, notice that, under the plausible assumption

that R2
max > R2

u > R2
r , (4) implies that b1u has the same sign as β1r − β1u. As stressed by Holly

(1982) this is not generally true. Further, since β1r − β1u = b1r − b1u, we also have

b1r
b1u

= 1 +
R2

u −R2
r

R2
max −R2

u

> 1.

In other words, Assumptions A–E together amount to assuming that adding the controls in X2

decreases the bias in estimating β1 or, in the terminology of DMP, that X2 is a balanced addition.

As stressed by DMP, this is also not generally true.

If Assumptions D and E are relaxed, then Oster’s second main result (Proposition 2) shows

that b1u is a root of the cubic equation

a3z
3 + a2z

2 + a1z + a0 = 0, (5)

with real coefficients

a0 = ϕσ21σ
2
y(R

2
max −R2

u)(β1r − β1u),

a1 = ϕ(σ21 − σ2ν)σ
2
y(R

2
max −R2

u)− σ2ν
(

σ2y(R
2
u −R2

r) + σ21(β1r − β1u)
2
)

,

a2 = (ϕ− 2)σ21(β1r − β1u)σ
2
ν ,

a3 = (ϕ− 1)(σ21 − σ2ν)σ
2
ν ,

where σ2y and σ2ν = σ21−σ
′

21Σ
−1
22 σ21 are the population variances of y and ν = x1−µ

′X2 respectively.

If only Assumption E is relaxed, then a3 = 0 and Proposition 2 implies that b1r is a root of the

quadratic equation

a2z
2 + a1z + a0 = 0. (6)

Notice that, while (5) admits either one or three real roots, (6) always admits two real roots of

opposite sign.

The more general Proposition 2 confirms that the inconsistency of the unrestricted OLS estima-

tor depends on the differences β1r−β1u, R
2
max−R

2
u and R2

u−R
2
r , but no longer provides an explicit

representation. Further, when equations (5) or (6) admit multiple roots, it is unclear how to select

one. To obtain a unique root of (6), Oster introduces an additional assumption (Assumption 3,

p. 8):
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Assumption F The covariance σ1η between x1 and η has the same sign as the covariance between

x1 and η∗ = β′2uX2, where β2u is the vector of coefficients on X2 in the linear projection of y on

x1 and X2.

To gain intuition about this assumption, Oster offers the following interpretation: “[e]ffectively,

this assumes that the bias from the unobservables is not so large that it biases the direction of

the covariance between the observable index and the treatment” (p. 8). Notice however that

η∗ = β′2uX2 = (β2 + τ2)
′X2. Hence, from (2),

cov(x1, η
∗) = cov(x1, (β2 + τ2)

′X2) = σ′21(β2 + τ2) = σ21ψ
′(β2 + τ2) = σ21(β1r − β1u).

This shows that Assumption F is equivalent to the assumption that σ1η and β1r−β1u have the same

sign which, as already mentioned, is an implication of Assumptions A, B and D. Thus Assumption F

is in fact redundant.

We stress the fact that restricting σ1η and β1r − β1u = b1r − b1u to have the same sign allows

one to select a unique root of the quadratic equation (6). As with the explicit solution (4), the

selected root depends on the implicit assumption that augmenting the short regression with X2

always decreases the bias in estimating β1. If this assumption is incorrect, one may select the wrong

root even when the values of ϕ and R2
max are known, as illustrated in Section 4.

The next theorem completely summarizes the relationships between b1u, β1r − β1u, R
2
max −R2

u

and R2
u −R2

r implied by Assumptions A and B:

Theorem 1 If Assumptions A and B hold, then

β1r − β1u =
σ1η − (σ21 − σ2ν)b1u

σ21
,

σ2y(R
2
u −R2

r) = σ2η + σ2νb
2
1u −

1

σ21
(σ1η + σ2νb1u)

2,

ϕσ2y(R
2
max −R2

u) =

(

σ2η
σ1η

− ϕb1u

)

σ2νb1u.

If k2 > 1, then b1u is a root of the cubic equation (5). If k2 = 1, then b1u is a root of the

quadratic equation c2z
2 + c1z + c0 = 0 with real coefficients c0 = −ϕσ221σ

2
2σ

2
y(R

2
max − R2

u), c1 =

σ21σ
2
2(σ

2
1σ

2
2 − σ221)(β1r − β1u), and c2 = (1− ϕ)σ221(σ

2
1σ

2
2 − σ221).

Theorem 1 corrects an error in the equation system on p. 7 of Oster’s paper and delivers the

same conclusions of her Proposition 2 without assuming that the controls are mutually uncorrelated.

The link between this theorem and Oster’s Propositions 1 is made clear by the next corollary:
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Corollary 1 If Assumptions A, B and D hold, then

(β1r − β1u)
R2

max −R2
u

R2
u −R2

r

=
z′Ωz

z′Ξz
b1u,

where z = β2 − Σ−1
22 σ21b1u, Ω = (σ21 − σ′21Σ

−1
22 σ21)Σ22β2σ

′

21, and Ξ = β′2σ21[σ
2
1Σ22 − σ21σ

′

21]. The

relationship (4) holds if and only Assumption E also holds.

The ratios (R2
max −R2

u)/(R
2
u −R2

r) and (z′Ωz)/(z′Ξz) are positive under general conditions, so

this corollary also shows that β1r − β1u and b1u have the same sign. Notice that Assumption E

is trivially satisfied when k2 = 1 but, as already argued, is unlikely to hold when k2 > 1. When

k2 = 1 but Assumption D does not hold, another corollary of Theorem 1 is the following:

Corollary 2 When k2 = 1 and ϕ 6= 1, define

ϕ∗

1 = 1−

√

1 +
1

ρ221

R2
u −R2

r

R2
max −R2

u

, ϕ∗

2 = 1 +

√

1 +
1

ρ221

R2
u −R2

r

R2
max −R2

u

,

with ρ21 = σ21/(σ1σ2). Then the quadratic equation c2z
2 + c1z + c0 = 0 admits two distinct real

roots if ϕ∗

1 < ϕ < ϕ∗

2, one real root if ϕ = ϕ∗

1 or ϕ = ϕ∗

2, and no real root otherwise.

4 Implications for empirical strategies

Based on Proposition 2, Oster discusses three possible strategies: (i) find the value of β1 for given

values of ϕ and R2
max; (ii) find the value of ϕ for given values of β1 and R2

max; (iii) find the value

of R2
max for given values of β1 and ϕ. These three strategies are easily implemented using Oster’s

Stata routine psacal but require Assumptions A and B to characterize the inconsistency of the

unrestricted estimator of β1 as a root of the cubic equation (5). Notice that the coefficients in this

equation can all be estimated consistently provided ϕ and R2
max are known or can be estimated

consistently.

Strategy (i) may be used to derive a bias-corrected estimate of β1 given knowledge of ϕ and

R2
max or, alternatively, to obtain bounds on β1 given bounds on ϕ and R2

max. In either case one

needs a unique value of β1 for any choice of ϕ and R2
max. With multiple roots (ϕ 6= 1), Oster’s

Stata routine selects the root closest to the unrestricted OLS estimate β̂1u and results in b1u having

the same sign as β̂1r − β̂1u. This creates two issues. First, when no root satisfies the sign condition

on b1u, it is not clear how the routine selects the solution for β1. Second, when one or more root

satisfies the sign condition, the root closest to β̂1u is not necessarily the correct solution.
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Table 1: OLS estimates of the coefficients in the DGP, the intermediate and the short regressions
from a pseudo-random sample of 100,000 observations

σ
1ξ = σ14 = −0.40 σ

1ξ = σ14 = 0.80

Variable DGP Interm. Short DGP Interm. Short
z1 1.001 0.519 1.247 1.003 1.963 2.445
z2 1.007 1.149 1.007 0.725
z3 −0.994 −1.104 −0.994 −0.775
z4 0.998 0.995
R2 0.833 0.698 0.260 0.881 0.854 0.715
ϕ −1.538 3.077

To illustrate, we present an example where Assumptions A and B hold but Assumption D does

not. Suppose that y = z1+ z2− z3+ z4+ ǫ, where the zj ’s are jointly normal (Gaussian) with mean

zero and second moment matrix

Σ = var









z1
z2
z3
z4









=









1 0.35 −0.30 σ14
0.35 1 −0.25 0
−0.30 −0.25 1 0
σ14 0 0 1









,

and ǫ ∼ N(0, 1) independently of the zj ’s. We set x1 = z1, X2 = (z2, z3) and ξ = z4, and consider

two cases that differ by the value of σ1ξ = σ14, namely σ14 = −0.40 and σ14 = 0.80. Table 1 shows,

for each case, the OLS estimates of the true DGP, the intermediate regression of y on x1 and X2,

and the short regression of y on x1 from a pseudo-random sample of 100,000 observations. Notice

that adding X2 to the short regression lowers the size of the bias in estimating β1 in the second

case (σ1ξ = 0.80) but not in the first (σ1ξ = −0.40). Of course, the investigator does not know this

because ξ is unobservable.

In the first case, employing Oster’s Stata routine with the true values of ϕ and R2
max gives three

possible bias-corrected estimates of β1: β̂
(1)
1 = 4.797, β̂

(2)
1 = 1.000 and β̂

(3)
1 = 1.747. Although

the second is equal to the true value, the routine selects the first because none of the β̂
(j)
1 satisfies

the sign condition on b1u. The selected estimate is clearly severely upward biased. The interval

[0.509, 4.798] for β1 implied by the restrictions −1.60 ≤ ϕ ≤ 0 and R2
max = 0.85 contains the true

value of β1 but is not sharp. Notice, however, that all the β̂
(j)
1 fall in the region where |b1r/b1u| < 1

so, in this case, one knows for sure that β̂1r has less bias than β̂1u.

In the second case, Oster’s Stata routine gives β̂
(1)
1 = 1.563, β̂

(2)
1 = 0.979 and β̂

(3)
1 = 4.825. The

first two values now satisfy the sign condition on b1u. Although the second value is closer to the

true value, the routine again selects the first because it is the closer to β̂1u = 1.963. The selected
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estimate is still upward biased but now the interval [1.963, 4.824] for β1 implied by the restrictions

0 ≤ ϕ ≤ 3.10 and R2
max = 0.90 no longer contains the true value of β1.

As for strategies (ii) and (iii), note that fixing the value of β1 for given values of β1r and β1u

is equivalent to fixing the values of b1r and b1u. Under Assumptions A and B, this allows one to

identify σ1ξ and σ1η, and therefore also σ2η from the third equation in Theorem 1. By restricting

either R2
max or ϕ, one can then identify σ2ξ . Thus, under Assumptions A and B, strategies (ii)

and (iii) amount to imposing arbitrary restrictions on all the unidentified model parameters. The

results obtained are also sensitive to the choice of R2
max for strategy (ii) and ϕ for strategy (iii).

5 Testing strategies

PPS consider the model y = βls + γ ′x + e, where s is a scalar treatment, βl is the causal effect

of interest, x = δs + u is a vector of unobservable controls, and u and e are random errors. This

is a special case of model (1) where β1x1 = βls, X2 = xm = x + m is a vector of observable

error-ridden controls, β2 = 0, ξ = γ ′x is the specification error, and ǫ = e. The assumption of

classical measurement error gives a balancing regression of the form xm = δs+u+m, with u and

m uncorrelated with s, and therefore ψ = δ. When k2 = 1, PPS also consider a mean-reverting

measurement error model resulting in a balancing regression of the form xm = (1+κ)δs+(1+κ)u+µ,

where −1 < κ < 0 and s, u and µ are uncorrelated with each other. In this case, the coefficient of

the balancing regression is ψ = (1 + κ)δ.

The main contribution of PPS is to compare the power properties of two alternative strategies

for testing whether the restricted OLS estimator is consistent: a classical F -test of significance of

the population coefficient ψ = σ21/σ
2
1 in the balancing regression and a Hausman-type test based

on the difference β1r − β1u = b1r − b1u = ψ′(β2 + τ2) between the restricted and the unrestricted

OLS estimators of β1. PPS refer to these tests as the balancing test (BT) and the coefficient

comparison test (CCT), respectively. Their results show that, if the intermediate regression is

misspecified (i.e., γ 6= 0), then BT is generally more powerful than CCT because measurement

error is comparatively less harmful when mismeasured variables are employed as outcome variables

in the balancing regression rather than as additional controls in the intermediate regression.

This insight reinforces our key point that adding controls to the short regression does not

necessarily improve the estimates of the causal effect of interest. While DMP and Oster are mainly

concerned with the statistical properties of the restricted and unrestricted OLS estimators of β1,

PPS focus on the implications of using the available controls for testing purposes. However, these
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two approaches are closely related through the relationship between mean squared error (MSE)

comparisons and testing strategies. It is well-known that if we delete a single control from a

correctly specified model, then MSE(β̂1r) ≤ MSE(β̂1u) if and only if the t-statistic on the coefficient

of the deleted control is smaller than one in absolute value. Similar results extend to the case of

multiple controls, where MSE comparisons depend crucially on the noncentrality parameter in the

distribution of either the classical F -statistic or the Hausman-type statistic used for testing the

hypothesis H0 : β2 = 0 in the intermediate regression (Toro-Vizcarrondo and Wallace 1968, Holly

1982). Additional results on MSE comparisons for the case when the intermediate regression is

subject to specification errors can be found in Appendix A of DMP.

We now use the general framework in DMP to provide more insight into the restrictions required

for the validity of BT and CCT. It follows immediately from (2) that BT and CCT provide tests

of the null hypothesis of interest, namely

H0 : b1r = τ1 + ψ′(β2 + τ2) = 0, (7)

only if suitable restrictions are placed on τ1. BT is concerned with the null hypothesis H0 : ψ = 0.

Writing τ1 = σ1ξ/σ
2
1−ψ

′τ2, we see that this is equivalent to (7) if and only if there exists a k2-vector

ω 6= −β2 such that σ1ξ = σ′21ω, so that

b1u = τ1 = ψ′(ω − τ2), b1r = ψ′(β2 + ω). (8)

CCT is instead concerned with the null hypothesis H0 : ψ
′(β2 + τ2) = 0, which is equivalent to (7)

if and only if there exist a scalar a 6= −1 such that

b1u = τ1 = aψ′(β2 + τ2), b1r = (1 + a)ψ′(β2 + τ2). (9)

For example, when k2 = 1 and measurement error is classical, we have ψ = δ, τ1 = δγθ and

τ2 = (1 − θ)γ, with θ = σ2m/(σ
2
m + σ2u). In this case, (8) and (9) hold when ω = γ 6= 0 and

a = θ/(1−θ) > 0, but this model is known to be restrictive because it implies that b1r/b1u = 1/θ > 1.

Similar considerations apply to the mean-reverting measurement error model, where

ψ = (1 + κ)δ, τ1 = δγ
θ

(1 + k)2(1− θ) + θ
, τ2 =

γ

1 + k

[

1−
θ

(1 + k)2(1− θ) + θ

]

,

with θ = σ2µ/(σ
2
µ + σ2u). Here, the restrictions (8) and (9) hold when ω = γ/(1 + k) 6= 0 and

a = θ/[(1+ k)2(1− θ)] > 0, but this implies that b1r/b1u = 1+ (1+ k)2(1− θ)/θ > 1. Like PPS, we

stress that this result is special and does not extend to more realistic settings in which s and m are
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correlated (Frost 1979), or s is also measured with error (Barnow 1976). Also notice that, if there

are multiple controls subject to measurement error (i.e., k2 > 1), then the condition b1r/b1u > 1

need not hold (Garber and Klepper 1980). Although theoretical power comparisons for the case of

multiple controls are still lacking, the Monte Carlo simulations in PPS provide convincing evidence

in favor of the BT strategy.

As mentioned by PPS, pretesting may have nontrivial effects on the statistical properties of

these tests. Strategies for addressing this issue, such as post-model-selection inference (see, e.g.,

Berk et al. 2013 and Leeb, Pötscher and Ewald 2015) and model-averaging estimation under a

misspecified model space (see, e.g., Zhang et al. 2016 and Ando and Li 2017), deserve careful

attention.

6 Conclusions

Oster’s Proposition 1 delivers a very sharp result but requires strong assumptions and knowledge

of the key parameter R2
max. Her Proposition 2, as reformulated in our Theorem 1, weakens some of

these assumptions but requires knowledge of both R2
max and the additional parameter ϕ. Despite

the strong assumptions, her characterization of the bias of the unrestricted OLS estimator as a

root of a cubic equation is useful but, when this equation has three roots, it is unclear which to

select. Our paper does not solve this problem, nor it offers other ways of correcting for bias, but

we hope it helps clarify the nature of Oster’s assumptions and properly evaluate the results of her

Stata routine. Finally, the two testing strategies in PPS also require restrictions, but in this case

the assumptions are fewer and more transparent, which makes it easier for practitioners to check

whether they are indeed satisfied.
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Appendix

Proof of Theorem 1. Assumption A and B imply the equation system

σ21(β1r − β1u) =
[

β2 − Σ−1
22 σ21b1u

]

′

σ21, (A1)

σ2y(R
2
u −R2

r) =
[

β2 − Σ−1
22 σ21b1u

]

′

[

Σ22 −
1

σ21
σ21σ

′

21

]

[

β2 − Σ−1
22 σ21b1u

]

, (A2)

ϕσ2y(R
2
max −R2

u)β
′

2σ21 = (σ21 − σ′21Σ
−1
22 σ21)

[

β2 − ϕΣ−1
22 σ21b1u

]

′

Σ22β2b1u, (A3)

which in turns implies the equation system in the statement of the theorem. When k2 > 1, we

then obtain a cubic equation in b1u following the argument in the proof of Oster’s Proposition 2.

When k2 = 1, equation (A2) is redundant and the result follows by solving for β2 and b1u the pair

of equations (A1) and (A3).

Proof of Corollary 1. The first result follows from (A1)–(A2) by setting ϕ = 1. To proof the

second result, define p = Σ
1/2
22 β2, q = Σ

−1/2
22 σ21 and τ = b1u, so that Σ

1/2
22 z = p−τq, Σ

−1/2
22 ΩΣ

−1/2
22 =

(σ21 − q′q)pq′, and Σ
−1/2
22 ΞΣ

−1/2
22 = (p′q)(σ21I − qq′). It then follows that

z′Ωz = (σ21 − q′q)(p − τq)′pq′(p− τq)

= (σ21 − q′q)
[

τ2(p′q)(q′q)− τ((p′p)(q′q) + (p′q)2) + (p′p)(p′q)
]

and

z′Ξz = (p′q)(p− τq)′(σ21I − qq′)(p − τq)

= (σ21 − q′q)(τ2(p′q)(q′q)− 2τ(p′q)2 + (p′p)(p′q)) + (p′q)((p′p)(q′q)− (p′q)2).

Hence, z′Ωz = z′Ξz if and only if

0 = (σ21 − q′q)
[

τ2(p′q)(q′q)− τ((p′p)(q′q) + (p′q)2) + (p′p)(p′q)
]

− (σ21 − q′q)
[

τ2(p′q)(q′q)− 2τ(p′q)2 + (p′p)(p′q)
]

−
[

(p′q)((p′p)(q′q)− (p′q)2)
]

= −
[

(p′p)(q′q)− (p′q)2
] [

(σ21 − q′q)τ + (p′q)
]

.

Under Assumption A, the second term is always different from zero. Thus, z′Ωz = z′Ξz if and only

if p and q are proportional to each other, that is β2 is proportional to µ = Σ−1
22 σ21.

Proof of Corollary 2. The result follows by solving for ϕ the equation

0 = (σ21σ
2
2 − σ221)

σ41
σ421

(β1r − β1u)
2 + 4ϕ(1 − ϕ)

σ2y(R
2
max −R2

u)

σ22
,

and then using the fact that, from (A1) and (A2), σ2y(R
2
u−R2

r)/(β1r −β1u)
2 = σ21(σ

2
1σ

2
2 −σ221)/σ

2
21.
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